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NUSC Technical Report 8667
31 January 1990

Evaluation of Attenuation/Minimum-Phase Pairs
by Means of Two Fast Fourier Transforms

Albert H. Nuttall

ABSTRACT

A numerically efficient method of obtaining the minimum-phase
characteristic corresponding to a measured attenuation (or
decibel gain) response of a linear network, by means of two fast
Fourier transforms, is presented and programmed in BASIC. A
method of extrapolating the measured attenuation to very small
and large frequencies, as required by the theoretical
transformations, is suggested. The attendant logarithmic
singularities in the attenuation are subtracted out and handled
separately, leaving a residual which is well behaved for
numerical Fourier transformation.

Approved for public release; distribution is unlimited.
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EVALUATION OF ATTENUATION/MINIMUM-PHASE PAIRS

BY MEANS OF TWO FAST FOURIER TRANSFORMS

INTRODUCTION

It is often important to determine whether a given linear

device is minimum-phase [1), because if so, it is then possible

to compensate the filter characteristic with reciprocal pole-zero

locations and obtain an overall all-pass characteristic with flat

amplitude and linear phase responses. A relatively simple way of

making this determination is to measure the attenuation (or

decibel gain) and actual phase shift of the given linear device

and then compute the minimum-phase corresponding to the measured

attenuation. If this latter calculated phase agrees with the

actual measured phase, then the filter is minimum-phase.

The minimum-phase corresponding to a given attenuation

function is determined analytically by a Hilbert transform

[2; chapter 6, article 221 or [3; section 10-31. However, this

direct integral evaluation is computationally unattractive due to

two poles on the line of integration [3; (10-67)]. In addition,

it yields only a single value for the phase after each numerical

integration. We will circumvent both of these difficulties by

first subtracting the singularities (which will be handled

analytically) and then employing fast Fourier transforms for

efficient numerical evaluation of the entire phase response.

1/2
Reverse Blank
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TRANSFER FUNCTION RELATIONS

FILTER CHARACTERIZATIONS

A linear time-invariant filter is characterized by its

impulse response h(T) or by its transfer function H(f) according

to Fourier transform

H(f) - f dx exp(-i2nfT) h(t) a F{h(T)(

(Integrals without limits are over the range of nonzero

integrand.) Both the impulse response h(T) and the transfer

function H(f) can be complex functions of time delay T and

frequency f, respectively.

The transfer function will be represented in terms of its

real and imaginary parts according to

H(f) - H r(f) + i Hi(f) , (2)

where

1 *

H.(f) - [Hlf) - H (f)] . (3)i i2_

It can also be representee in terms of its even and odd parts as

H(f) - H e(f) + H (f) (4)

which are generally defined according to

3
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e9(f) - 1 [H(f) + H(-f)] - d-r cos(2nft) h(t)

HO(f) - T[H(f) - H(-f)] - -if dT sin(2nfT) h(-r) (5)

Functions H e(f) and H O(f) are both complex generally, whereas

H r(f) and H i(f) are always real. Impulse response h(t) can be

complex.

(In the special case where impulse response h(T) is real,

then

He (f) - Hr(f) - f dT cos(2nfT) h(T)

H0 (f) - i Hi(f) - -iJ dT sin(2nfT) h(T) . (6)

CAUSAL FILTER

A filter is said to be causal when its impulse response h(T)

is zero for negative arguments; that is,

h(T) - 0 for T < 0 (7)

However, h(T) can still be a complex function of T. In this

causal case, the real and imaginary parts of the transfer

function H(f) satisfy a pair of Hilbert transform relationships,

provided that h(T) does not contain any impulses at the otigin;

see also [3; page 1981. The Hilbert transform of an arbitrary

complex function G(x) is defined as

4
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H{G(x) a {du G(u_) - _1 G(x) (8)-n I x-u Rx'

where the tic mark on the integral sign denotes a principal value

integral [4; section 3.051 and 0 denotes convolution. Principal

value integrals are considered in appendix A.

In order to derive 'he Hilbert .elations of interest, let

U(x) be the unit step function,

{ for x >

U~x) for x < 01

Then, because h(¶) is causal, transfer function (1) becomes

H(f) - j dT exp(-i2nfT) h(T) U(T) - F(h(T) U(T)) -

Ffh(t)) 0 FIU(r)} - H(f) -61f) 4 i
2 i2nf

1 i
- �H(f) - (H H{ (f)) . (10)

Here, we used the Fouritr transform of the unit step function

U(t) [3; (3-13)1 and definition (8). Equation (10) yields

H(f) - -i H(H(f)) (11)

or, more explicitly,

1
H (f) - H(Hi(fl) - 0- H (f)r 1 Rf i

H.(f) - - {H (f)H - - H (f) . (12)1 - r~ nf r

5
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We repeat that transfer function relations (12) hold true even

when impulse response h(T) is complex; only causality is used.

Analogous properties to (12) hold between the eveii and odd parts,

H e(f) and H (f), of the transfer function H(f) as well. Namely,

because the Hilbert transform of an even (odd) function is odd

(even), there follows, for a causal (but possibly complex) h(T),

H e(f) - -i H(H (f)) , H (f) - -i (H e(f)} . (13)

If h(T) contains an impulse at the origin, both parts of

(12) are false, even though h(T) may be causal. Consider

h(r) - (a + ib) 6(T), a and b real . (14)

Then (I) yields constant transfer function

H(f) - a+ib, Hr (f) - a, H i(f) - b, He (f) - a+ib, H0 (f) - 0. (15)

But since the Hilbert transform of a constant is zero

t4; section 3.051, neither part of (12) is satisfied, and the

first part of (13) is false. On the other hand, if

h(T) - (a + ib) 6(x - T) , a and b real , (16)

then (12) and (13) are satisfied only if T > 0. Here, we used

the facts that

Hfcos(2nfT)) - sin(2nfITI), HRsin(2nfT)} - -sgn(T) cos(2nfT),(17)

where sgn(T) is the polarity of T. Henceforth, we assume that

components like (14) and (15) are not present in the filters of

interest; see also [3; page 1981.

6
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For a causal filter, (2) and (12) afford a method of

obtaining the complete transfer function from its real part

alone, according to

H(f) - H r(f) + i Hi(f) -

- H r(f) - i HH r(f)) (18)

However, a more attractive approach, computationally, is to use

Fourier transforms, as follows. Define inverse Fourier transform

h(t) a F-1H r(f)} - f df exp(i2nfr) H r(f) (19)

for any real part Hr (f). (The notation hr(T) cannot be used

instead of h(T), because h(T) is not the real part of h(T), nor

is hit) necessarily real.) Substitution of (3) into (19)

immediately yields

h(tr) - I[h('r) + h (T)]; i(t h* (t) .(20)

(These particular relations in (20) actually hold true for any

filter h(T), noncausal as well as complex.) Then because h(T) is

causal, there follows directly

2h~x) for T > 0
h(T) - - 2 h(t) U(t) . (21)

0 for T <

In summary, the method for obtaining the complete transfer

function H(f) from just its real part Hr(f), for a causal filter,

7
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is to perform, in order, the following operations:

h(-) - F- I Hr(f)}

h(t) - 2 h(T) U(T)

H(f) - F~h(t)) . (22)

This procedure requires two Fourier transforms, which can be

accomplished very quickly and efficiently by means of two fast

Fourier transforms. Furthermore, a fast Fourier transform

output sweeps out the complete range of argument values, whereas

the brute force Hilbert transform integral of (18) and (8)

requires an additional numerical integration for each frequency f

of interest. Functions h(t) and h(T) in (22) can be complex.

An accuracy check on the procedure in (22) is afforded by

comparing the real part output of the Fourier transform in the

bottom line with the input Hr(f) utilized in the top line. The

complete set of function values of Hr (f) for all f is required

for this procedure; in retu..n, the complete set of values of

Hi(f), for all f, results. The operations in (22) are linear

insofar as the overall transformation of Hr (f) is concerned, and

so superposition can be used for any breakdown of Hr (f) into

components, if desired.

The rule for obtaining H(f) or Hi(f) from H r(f), as given in

(22), applies whether filter H(f) is minimum-phase (1) or not.

The only prerequisite for the validity of (22) is the causality

of impulse response h(T).

If only He (f) were available (instead of Hr (f)), a more

attractive procedure for obtaining H(f) or Hi(f) than using (4)

8
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and Hilbert transform (13), is to observe that, in general, for

any filter, the inverse Fourier transform

(H (f)) - df exp(i2nfT) He(f) - 1[h(t)+h(-T)] - he (r). (23)

Here, we used (5), the inverse to (1), and the general definition

of the even part of an arbitrary complex function. Then, if h(T)

is causal, we have

h(T) - 2 he(t) U(Ir) . (24)

Thus, the procedure for obtaining H(f) is identical to (22) if we

replace Hr(f) and h(r) by He(f) and he( (), respectively.

ONE-SIDED SPECTRAL FUNCTIONS

The analogous situation in the frequency domain (to causality

in the time delay domain) is as follows: if (complex function)

A(f) is zero for negative arguments, that is,

A(f) - 0 for f < 0 , (25)

then a procedure similar to (10)-(11) reveals that the inverse

Fourier transform of A(f) is given by

a(T) a - 1JA(f)) - i H(a(r)} . (26)

That is, in terms of real and imaginary parts,

ar (T) - - H(ai(r)) , ai(-r) - H(a r(T)) . (27)

The function a(t) is called an analytic waveform, for reasons to

become apparent shortly.

9
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GENERAL SPECTRAL RELATIONS

For future purposes, the Hilbert transform of a completely

arbitrary complex waveform b(t),

1
bs(T) n H{b(T)) - 0- S b(T) (28)

has spectrum (Fourier transform)

-i (f) for f > 0}
F(bH(()] - -i sgn(f) B(f) - , (29)

where B(f) is the spectrum of b(T). Here, we used the fact that

the following two functions are a Fourier transform pair

[3; apply (2-34) to (3-9)1:

--L -i sgn(f) (30)RT

The left-hand side of (29) is the Fourier transform of the

Hilbert transform of b(T). It cannot be labeled as BH(f), which

is the Hilbert transform of the Fourier transform B(f) of b(T).

The two operations of Hilbert transformation and Fourier

transformation are not interchangeable, in general.

It follows from (29) that

rFb(¶) + i bH (T)) - 2 B(f) U(f) , (31)

which is a one-sided spectrum. Also, b(T) + i bH(T) is an

analytic waveform. Waveform b(T) is completely arbitrary here.

10
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ANALYTICITY OF TRANSFER FUNCTION

Consider the causal exponential impulse response

h(T) - exp(-T) U(T) . (32)

The corresponding transfer function is

1
H(f) - 1 + i2nf ' (33)

which has a pole in the upper-half f-plane at f - i/(2n), but

which is analytic in the lower-half f-plane. (The lower-half

f-plane corresponds to the right-half s-plane of Laplace

transforms.)

This analyticity of the transfer function H(f) in the lower-

half f-plane is generally true for causal finite-energy filters,

as may be seen by the following argument. Let frequency f be a

complex variable with real and imaginary parts according to

f - fr + ifi. Then, for a causal filter, (1) can be expressed

more explicitly as

+W

H(f) - j dT exp(-i 2 nfrT) exp(2nf1i) h(T) (34)

0

The first exponential in (34) has magnitude 1 for all T on the

contour of integration. And if fi < 0, the second exponential

term in (34) decays with increasing T, keeping the integral
convergent, as it was for fi - 0. That is, transfer function

H(f) is analytic in the lower-half f-plane for a causal impulse

response h(T). Notice, however, that no statements can be made

11
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about the locations of the zeros of transfer function h(f) in the

complex f-plane. Thus we have

causal h(T) 0 analytic H(f) in lower-half f-plane . (35)

The converse is also true, namely, that analyticity implies

causality. To develop this point, express the inverse Fourier

transform to (1) in the form

h(t) - f df exp(i2nfT) H(f) -

C1

- { df exp(i2nfrT) exp(-2nfiT) H(f) (36)

C2

where contours C1 and C2 are depicted in the complex f-plane in

figure 1. Because transfer function H(f) is analytic in the

(crosshatched) region between contours C1 and C2 , we are allowed

to move the integration freely between them, as done in (36),

f.1

f-plane

C 0 fr

analytic H(f)

C /7////

Figure 1. Complex f-Plane Contours

12
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without altering the value h(T) of the integral. On contour C2,

we have fi < 0 everywhere. Therefore, if T < 0 in (36), the

second exponential decays to zero as contour C2 is moved farther

down in the f-plane. Because H(f) is analytic in the lower-half

f-plane, we can move C2 arbitrarily far down, causing the

integrand of (36) to go to zero, thereby leading to a zero value

for h(T) whenever T < 0. Thus, we have

analytic H(f) in lower-half f-plane -+ causal h(T) . (37)

This equation is the converse to (35).

Because we have already shown in (10)-(12) that a causal

impulse response h(-r) leads to a transfer function H(f) with

Hilbert transform relations between its real and imaginary parts,

it follows from (37) that an analytic transfer function H(f)

leads to the same conclusions. This means that, for an analytic

transfer function H(f) in the lower-haf f-plane, we can use the

efficient procedure given in (22), in terms of two (fast) Fourier

transforms, to find the imaginary part Hi(f), given only the real

part H )

For the example given earlier in (33), we have real part

- 1Hr(f) - I "
Hr 1 + (2nf) 2

Then from (22), we obtain, in order,

1 1
h(¶) - 1 exp(-1¶I) , h(¶) - exp(--) U(T) , H(f) - 1 + i2nf

which corroborates (32) and (33).

13/14
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MINIMUM-PHASE TRANSFER FUNCTIONS

From this point on, we presume that impulse response h(T) is

causal and that transfer function H(f) contains only poles and

zeros. It then follows from (35) that transfer function H(f)

has no poles in the lower-half f-plane. We also assume now that

H(f) has no zeros in the lower-half f-plane; that is, the filter

is minimum-phase [1,2,3]. In this case, the function

Q(f) - - In H(f) (38)

is analytic in the lower-half f-plane, because the function in z

is nonanalytic only at z - 0 and z - - in the complex z-plane.

Accordingly, by analogy to (37), inverse Fourier transform

q(t) - J df exp(i2nfT) Q(f) (39)

is causal. (An example is given in appendix B.) Therefore, just

as shown in (10)-(12), the real and imaginary parts of Q(f),

Q(f) - Qr (f) + i Qi(f) , (40)

can be found from each other by means of Hilbert transforms. In

particular, as in (12),

Qr(f) - HfQi(f)) , Qi(f) - - H(Qr(f)) . (41)

Alternatively, according to the sequel to (37), because Q(f)

is analytic in the lower-half f-plane, the imaginary part Oi(f)

can be found from real part Qr (f) according to procedure (22)

involving two Fourier transforms.

15
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Interesting interpretations of minimum-phase filters, in

terms of their group delay and rate of energy flow through the

filter, ate given in 15; pages 132 - 133]. In particuldr, the

minimum-phase filter has the smallest group delay of any stable

filter with specified magnitude transfer function.

ATTENUATION AND PHASE

There is another way of describing a transfer function H(f)

rather than by its real and imaginary parts, which is very useful

in some applications. Namely, let

H(f) - expI-t(f) - i 0(f)] , (42)

where

a(f) - attenuation} of filter . (43)

0(f) - phase shift)

Reference to (38) and (40) immediately reveals that

a(f) - Qr(f) I (f) - Qi M) (44)

Therefore, if filter H(f) is minimum-phase, according to the

discussion in (38)-(41), =(f) and 0(f) can be found from each

other by means of Hilbert transforms. In particular,

0(f) - - a{a(f)} = - - x(f) . (45)

(Strictly, this relation is not usable and must be modified to

allow for attenuations m(f) with logarithmic singularities; for

16
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example, see [3; pages 206 - 2081. This manipulation is

discussed in appendix C.)

Alternatively, the procedure in (22) can be employed in the

form

W(x) n_ 1 ((f)}

q(t) - 2 _q( ) U(x)

a(f) + i O(f) - F~q(t)l . (46)

The function g(T) is defined by the inverse Fourier transform in

the top line of (46). Phase shift O(f) for a minimum-phase

filter is given by the imaginary part of the Fourier transform in

the bottom line of (46).

A common alternative descriptor of the frequency behavior of

a filter is the gain G(f) in decibels, defined as

G(f) - 20 loglo IH(f)I . (47)

Because the attenuation follows from (42) as

a(f) - - in lH(f)I , (48)

the gain G(f) and the attenuation a(f) are related by

20
G(f) - -n(10) f) - 8.686 a(f) . (49)

Measurement of either one is sufficient to find the other and to

thereby determine the phase shift O(f) of a minimum-phase filter.

17
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EXAMPLE AND LIMITATION

We again consider the example given in (32)-(33), namely

1
h(T) - exp(-T) U(t) , H(f) - 1 + i2nf * (50)

The attenuation and phase follow from (42) according to

1 2f2
a(f) - l in(l + 4 f ,

0(f) - arctan(2nf) . (51)

If we attempt to apply the inverse Fourier transform in the top

line of (46) to the attenuation a(f) in (51), we encounter a

divergent integral because a(f) - inifi as f 4 ±-.

More generally, if filter H(f) has a zero at a frequency f

equal to any finite real value, the attenuation a(f) has a

logarithmic singularity at that real frequency, and the inverse

Fourier transform in (46) diverges. Because typical filters very

often have this feature (and almost always at f - 0 and f - ±-),

a way must be found to circumvent the divergent part of the

inverse Fourier transform integral, so that the efficient

procedure of (46) can be salvaged.

18
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SUBTRACTION OF SINGULARITY

The procedure to be used here is one commonly adopted to

numerically evaluate convergent integrals with singular

integrands; it is illustrated by the example

aI r d cosx
I dx c' < 1. (52)

0 x

If v is positive, the integrand has an infinite cusp at the

origin, yet the integral converges, because v < 1. We express

a a a
I- dcosx l+l=d cosx~l1(3

0 x0 x0 x

which is allowed, because both integrals converge. The last

integral in (53) can be done in closed form, yielding al- /(l-v).

Also, the middle ;ntegrand now behaves as x 2- as x 4 0+, which

is zero at the origin, because 2-v > 1; this behavior enables a

straightforward numerical evaluation of the middle integral.

The key to this procedure is to find a component that can be

integrated in closed form and that, when subtracted from the

given integrand, yields a well-behaved residual for numerical

integration.

19
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APPLICATION TO FILTERS

The way we apply this subtraction procedure to a given

attenuation a(f) with logarithmic singularities is to break it

into two parts,

O(f l(f) + m2 (f) , (54)

where attenuation Ml(f) contains all the singular components and

has a known closed form minimum-phase pair S1 (f). (An example is

furnished Dy (50) and (51); some additional examples are listed

in appesidix D.) Then residual attenuation a 2 (f) is found

according to

a2(f) - L(f) - l1(f) (55)

and is well-behaved for all f. Residup' .,(f) is subjected to

the repeated Fourier transfor- p:ocedure detailed in (46),

resulting in phase shift "unction 0,(f). Finally, the complete

minimum-phase corresponding to the given attenuation a(f) is

obtained from

0(f) - 0 1 (f) + 02 (f) (56)

The procedure can be summarized as follows:

t(f) - 0(f) desired ;

M (f) + *2(f) 0 01(f) + 02 (f) used (57)

The exact choice of attenuation/iminimum-phase pair al(f),

S1(f) is not critical, except that residual a 2 (f) must not have

any singularities and must decay (rapidly) to zero for large f.
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Of course, the given attenuation a(f) must be known for all f in

order to apply this (or any) procedure for obtaining minimum-

phase shift 0(f), whether obtained directly by Hilbert transforms

or by means of a Fourier procedure. The actual numerical

evaluation of the Fourier procedure delineated in (46) is

accomplished by means of fast Fourier transforms; the details are

presented in appendix E.

SHORTCOMING OF HILBERT TRANSFORM

Suppose that two minimum-phase filters HP(f) and Hb(f) differ

only by a complex scale factor:

Hb(f) - c Ha(f) (58)

Then

ab(f) - a(f) - lnjcj

8b(f) - 8a(f) - arg(c) + 2nn , n integer . (59)

However, if a (f) and 0 a(f) are a Hilbert transform pair, ab(f)

and 0 b(f) cannot possibly be (unlesb c - 1 and n - 0) because the

Hilbert transform of a constant is zero. Functions ab(f) and

3b(f) are both "incomplete," in that attenuation ab(f) contains

no information about arg(c), while phase 0b(f) contains no

information about Icl. This means that the Hilbert transform of

a given attenuation (phase) yields a phase (attenuation) function

that can differ from the actual phase (attenuation) of a minimum-

phase filter by an arbitrary additive constant. Some information
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is inherently absent from a given attenuation (phase) function.

In addition, because the Hilbert transform of a constant is zero,

additive constants are lost through this transformation. (The

situation is somewhat similar for the Fourier tLansform procedure

given in (46).)

Alternatively, suppose that

hb(x) - h1 (-r - T) , Hb(f) - H a (f) exp(-i2nfT) (60)

Then filter Hb(f) contains a transfer function component of

exp(-i2nfT), with corresponding attenuation 0 and phase 2nfT.

Thus, the attenuation contains no information about a pure time

delay. However, it should be noted that this component

exp(-i2nfT) does not possess poles and zeros -t all, but in fact

has an essential singularity at f -
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APPLICATION TO MEASURED DATA

In this section, we will apply the previous Fourier procedure

to a measured pair of attenuation and phase shift functions in

an effort to determine if the filter is minimum-phase. The

particular filter is a JlS-1 transducer used as a continuous-wave

source in the 10 to 900 Hertz range. The transmitting current

response of this device is defined as the ratio

output pressure (61
input current

and is the transfer function of interest. The reference level is

taken as 1 vPa/Amp. The measurements procedure include a

water-path propagation delay (of unknown value) between the

transducer and a calibrated receiving hydrophone.

The measured decibel gain, (47)-(49), of transfer function

(61) is displayed in figure 2 for the range of frequencies from

30 to 500 Hertz, on a logarithmic frequency abscissa. Also

superposed are the decibel gain responses of filters with 1 or 2

or 3 poles at the origin, which plot as straight lines on this

type of paper. This information is required for determining the

behavior of the filter from 30 Hertz down to f - 0 and is

necessary because the Hilbert and Fourier procedures both require

knowledge of the complete attenuation (or gain) for all

frequencies, in order to determine the value of the corresponding

minimum-phase shift at just one frequency. It may be reasonably

concluded from the fits in figure 2 that the transducer of

Figures 2 through 11 are collected at the end of this section.
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interest here has a double zero at f - 0.

In addition, the same fitting procedure has been attempted in

the neighborhood of 500 Hertz in figure 2, as may be seen by the

superposition of responses for filters with decays corresponding

to 0 or 1 or 2 or 3 poles at f - -. However, the situation is

rather poor at this upper end of the measured frequency range,

because, as seen in figure 2, the transducer has not yet

developed its asymptotic behavior at f - 500 Hertz. This

behavior is consistent with the information mentioned above,

which describes the use of this device as a source up to 900

Hertz. Thus, we have a situation where we have insufficient

measurements to fully apply the theoretical developments

presented earlier. Nevertheless, we will attempt to circumvent

the inadequacy by extrapolating the given measurements into the

frequency range above 500 Hertz and then using the combination of

measured and extrapolated gains to determine the minimum-phase

response.

PHILOSOPHY OF EXTRAPOLATION

A situation of frequent occurrence is the following. We have

a measured residual attenuation * 2 (f), but it is available only-

for 0 < fI < f < f 2 ; see (54)-(57). We presume that attenuation

2 (f) is even about f - 0. Call this total frequency range of

known values, K. Denote the remainder of the frequency range,

where %2 (f) is unknown, by U.

We want to evaluate the minimum-phase corresponding to a2(f),
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namely

2(f) - - H2(f)) - 1 J du (62)02f ln. f - u

Our approach is to extrapolate a2 (f) beyond K into the unknown

frequency range U. Call this extrapolated function a2e(f); it

exists for all f. This extrapolation must be rather close to the

true (unknown) attenuation *2 (f) in U, but a2e(f) need not agree

with " 2 (f) inside K. In particular, a2 e(f) and a 2 (f) should

match in value and slope at the boundaries of K.

Then, we can obtain the following approximation to phase

(62), namely

01 M du *2 (u) du 1a 2e(u)
2a n f - u f du f - u

K U

1 2 (u) - a2e(u) du 2e (u)63)
du J f-u -(63)-

- fd f -U- f - u

K

The first (finite) integral in (63) is done numerically, by

employing the Fourier procedure presented here. The second

integral in (63) is actually divergent and is instead replaced by

use of a known attenuation/minimum-phase pair, =2e(f), 0 2e(f).

The key to this procedure is a shrewd choice for the

extrapolated attenuation a2e(f). Several candidates, along with

the corresponding minimum-phase functions, are listed in appendix

D.
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LAPLACE TRANSFORM NOTATION

For convenience of notation, we employ here the Laplace

transform of the impulse response, namely

+a

L(s) - f dT exp(-sT) h(T) , (64)

0

where we have specifically limited consideration to causal

filters. The connection with the Fourier transform (1) is

H(f) - L(i2nf) . (65)

EXAMPLE A

The first attempted fit to the measured gain in figure 2 is

by means of filter

L(s) - (s + s+2  (66)

(s+a)(s + b)

with constants a - 260, b - 330, and c - - .55E8. This filter

has the desired double-order zero at the origin, but does not

decay for large frequencies. The gain of (66) is superposed on

the measured gain in figure 3; it is seen that the constants have

been chosen to give a fit that matches in value and slope for

small frequencies and that matches the measured gain value at

500 Hertz.

The difference in decibels between the measured gain and the

fitted gain is displayed in figure 4; it goes to zero at 30 and

500 Hertz and is assumed to be zero outside this range. This
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assumption is not likely to be correct for f greater than 500

Hertz, but it is necessary in order to proceed with the numerical

manipulations. The difference in attenuations, o 2 (f) of (55), is

available by dividing the result in figure 4 by -8.686; see

(47)-(49).

The residual attenuation c 2 (f) is subjected to the cascaded

Fourier procedure of (46), and the resultant phase 0 2 (f) is added

to the minimum-phase 01 (f) corresponding to (66). The final

total phase 1(f) is shown in figure 5, with the label A&T,

meaning analytic and transform, that is, aI(f) plus i 2 (f).

Superposed on this figure is the measured phase, with the label

M&D, meaning measured and time-delay adjusted. Recall in the

discussion surrounding (61) that there is an unknown time delay,

between the transducer and receiving hydrophone, included in the

measurements taken. Accordingly, a selection of time delay was

made that yielded the best eyeball fit of the two phases over

the range of frequencies from 0 to 400 Hertz in figure 5; this

corresponds to an additive linear phase function of frequency, as

indicated by example (60). The time delay was 1.43 ms.

The agreement between the minimum-phase and the measured

results in figure 5 allow us to conclude that the J15-1

transducer is indeed a minimum-phase filter, at least over the

frequency range up to 400 Hertz. The difference between the two

results is 170 at 500 Hertz, which is significant. However, the

reason for this discrepancy is undoubtedly due to the fact that

(66) is not the correct fit for f > 500 Hertz, because (66) has

no decay for large frequencies.
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EXAMPLE B

In an effort to find a better phase match, another fit was

also tried, namely filter

L(s) Cs 2  2
(S + ao)[(s + a)6 + b 2 ] (67)

with constants ao - 4000, a - 260, b - 400, and c - - .275E12.

The measured and analytical decibel gains are plotted in figure

6, while the decibel difference is plotted in figure 7. The

corresponding two phase plots, obtained by an identical procedure

to that described in example A above, are presented in figure 8.

Now, the difference in the two phase curves at 500 Hertz has

decreased, but only slightly, to 140. Apparently, the unmeasured

decibel gain, in the frequency range above 500 Hertz, is causing

inaccurate calculations of the minimum-phase in the region just

below 500 Hertz, due to our inability to correctly extrapolate,

by means of (66) and (67), to what the filter gain truly was in

that frequency range. This supposition is consistent with the

observation that the minimum-phase at a particular frequency is

largely governed by the (rate of change of the) attenuation in

the neighborhood of that frequency 12; page 3451. The agreement

in phase results for the lower frequencies comes about because

errors in gain measurements above 500 Hertz have a much reduced

effect on the calculated phase at low frequencies.
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EXAMPLE C

In an attempt to justify this conjecture, an estimate of the

unmeasured gain in the frequency range from 500 to 900 Hertz was

made and is illustrated in figure 9. A droop of 7 dB, centered

at 565 Hertz, has been added and is annotated by the phrase

"augmented". The fit is again (66), with the same constants as

used for example A, and is superposed in the figure.

The two phase curves are illustrated in figure 10. Now, the

discrepancy between the two results is negligible (within

measurement error) all the way up to 500 Hertz, the maximum

frequency at which the phase was measured. Thus, we feel

justified in concluding that the device under investigation is

indeed a minimum-phase filter, at least over the measured

frequency range up to 500 Hertz.

LIMITED FREQUENCY RANGE

It has been stated above that the measured filter appears to

be minimum-phase in a particular frequency range. Strictly, this

is not a valid concept; but it is necessary to allow for it in

practice, where filter responses cannot possibly be measured for

all frequencies. For example, suppose that the transfer function

H(f) has a collection of poles and zeros in the upper-half

f-plane, all fairly near the origin f - 0. In addition, let H(f)

have a pole-zero pair far away from the origin, but symmetrically

located about the real f axis, so as not to affect the gain or

attenuation; see the pair near f - f 2 in figure 11.
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Obviously, the filter in figure 11 cannot be minimum-phase,

because it has a zero in the lower-half f-plane. Yet, its

measured phase, for frequencies less than f1, would be

indistinguishable from that of the minimum-phase filter that

does not contain that extra pair. Thus, we would reasonably

conclude, upon the basis of the measurements made, that the

filter is "minimum-phase for f < fl'" Furthermore, this is a

practically useful concept because compensation of the filter in

this same frequency range is certainly possible and allowable.

In other words, measurement in a limited frequency range only

allows us to make conclusions in that same range; in fact, the

situation is slightly worse than that, because the edges of the

range may also be .. to question.
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SUMMARY

For a minimum-phase filter, the phase shift 0(f) can be found

from the attenuation c(f) by means of two cascaded fast Fourier

transforms, once the logarithmic singularities in a(f) have been

subtracted out and handled analytically. A partial accuracy

check is automatically built into the procedure, because the real

part of the output should agree with the given input; the

imaginary part of the output is the desired minimum-phase result.

Tiis Fourier approach yields the entire phase curve for all

frequencies, not just a point-by-point output, as a Hilbert

transform numerical integration would give.

In order to use this procedure, the attenuation must be

measured for all frequencies, or at least for large enough and

small enough frequencies that the asymptotic behavior is well

developed and obvious. A plot of the attenuation (or decibel

gain) on a logarithmic frequency abscissa is recommended for this

purpose, because the filter magnitude characteristic should

approach a straight line with a decay equal to a multiple of

6 dB/octave in the neighborhood of zero and infinite frequencies.

Failure to make a complete set of measurements will lead to the

need for extrapolation and the attendant errors that can oncur

with such a procedure, as illustrated here. Furthermore,

statements about the minimum-phase behavior of a particular

filter can only be made (with)in that same frequency range.
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APPENDIX A. PRINCIPAL VALUE INTEGRAL EVALUATION

Through a change of variable, a principal value integral can

be put in the form

b

I - dt ,t' where g(O) * 0 . (A-i)

-b

Limit b can be finite or infinite. (For example, (8) fits this

form when we let g(t) - G(x-t)/n.) Although (A-1) is a principal

value integral, it can be expressed as (ordinary integrals)

b b bo(t) go (t) V dt

I - dt - 2J dt t f -- [g(t) - g(-t)] , (A-2)

-b 0 0

where go(t) is the odd part of g(t); see definition (5). This

form can be used for numerical evaluation whether b is finite or

not. If b is infinite, the integrand of the last integral in

(A-2) maintains the same decay with t as original integral (A-i).

This is not true of the sometimes recommended alternative form

b

I - j dt g(t), t g(0) (A-3)

-b

which decays very slowly with t, although it is finite at the

origin t - 0. However, another alternative that advantageously

uses this subtraction device is given later in (A-li).

A simple example of (A-l)-(A-2), for b finite, is furnished

by the integral
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b b
I " • dt exq(t) " 2r dt sinh(t) (A-4)

I - d t(A4

-b 0

the latter of which has a well-behaved integrand at t - 0.

DERIVATIVE EVALUATION

In general, the last integrand in (A-2) behaves as

g(t) - g(-t) 2 g'(0) as t 4 0 (A-5)
t

Therefore, in order to use (A-2), it is necessary to have g'(0).

If all we can easily evaluate is g(t), and not its derivative

g'(0), a good approximation is available through the following

device. We know that g'(0) is approximated by

g(C) - g for small c . (A-6)
2c

However, if c is too large, this is a poor approximation, whereas

if c is too small, round-off errors cause numerical stability

problems. But we know that

g(C) - g(-C) . g(O) +C + O(c ) as e 4 0 (A-7)
2c - g''6(0)

So, letting F(c) be the left-hand side of (A-7), we have, to

second order,

P(c) - A0 + A1 €
F(c) - A0 + A 1 C} 2 where A. and A1 are unknown . (A-8)

F(c/2) - Ao0 + A1 C244
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The desired unknown follows easily from (A-8) as

A 4 F(v/2) - F(c) - g'(0) . (A-9)
o 3

This procedure is an extrapolation to the limit; it uses v/2 as

the smallest argument of F.

A program for the evaluation of g'(t) at general t is

furnished here in BASIC; it requires specification of a tolerance

Tol in line 70 of the function subroutine FNDerivl.

10 INPUT T
20 Derl-FNDerivl(T)
30 PRINT T,Derl I t,g'(t)
40 END
50 1
60 DEF FNDerivl(T) ! -g'(t) via extrapolation
70 Tol-1.E-6 I tolerance
80 E-.2 I epsilon (start)
90 E-E*.5
100 Vl-V2
110 V2-(FNG(T+E)-FNG(T-E))/(2.*E)
120 V-V2+(V2-V1)/3.
130 IF ABS(V2/V-1.)>Tol THEN 90
140 RETURN V
150 FNEND
160 !
170 DEF FNG(T)
180 RETURN EXP(T) I example exp(t)
190 FNEND

An application of this program to the exp(t) example in line 180,

at argument t - 1.1, yielded an error of -7.8E-13.

If we instead kept terms to fourth order in (A-7), an

extension to (A-8) yields approximation

g'(0) a 1 64 F() - 20 F(fl + F(c)] . (A-10)

This procedure uses c/4 as the smallest argument of F.
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AN ALTERNATIVE SUBTRACTION PROCEDURE

We now express (A-i) in the form

b a

I d { t g()- dt g)+ d dt I Lt) ,(A-l1)

-b -a R

where limit a is chosen for convenience and R is the union

(-b,-a) U (a,b). Then, as done in (A-3),

a

I- f dt g(t) - 9(0) + J dt g(t) (A-12)

-a R

These are both ordinary integrals now. The first integrind is

finite at t - 0, with value g'(0), while the second integrand

maintains its original decay as x 4- ±b.

SECOND DERIVATIVE EVALUATION

The procedure presented in (A-5)-(A-9), for the approximate

evaluation of first derivative g'(0), can be extended to the

second derivative g"(0) as follows. We know that

g(c) + g(-c) 1 2 €4
2 - g(0) + 1 g"(O) c + O(C ) as c 4 0 . (A-13)

Therefore,

g(c) + g(-c) - 2g(0) 2g"() + 0(c 2  (A-14)
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Letting D(c) be the left-hand side of (A-14), we have, to second

order,

2

0 1 where B and B are unknown (A-15)

D(c/2) B + B1 c2/41 0

The desired solution is

Bo -~4 D(c/2) - D(c) • g"(0) (A-16)

This is an extrapolation to the limit; it uses E/2 as the

smallest argument of D. A program for the evaluation of g"(t) at

general t is given below in BASIC; it requires specification of a

tolerance Tol in line 70 of the function subroutine FNDeriv2.

10 INPUT T
20 Der2-FNDeriv2(T)
30 PRINT T,Der2 ! tg"(t)
40 END
50 !
60 DEF FNDeriv2(T) ! -g"(t) via extrapolation
70 Tol-l.E-6 I tolerance
80 E-.2 I epsilon (start)
90 G2-2.*FNG(T)
100 E-E*.5
110 Vl-V2
120 V2-(FNG(T+E)+FNG(T-E)-G2)/(E*E)
130 V-V2+(V2-V1)/3.
140 IF ABS(V2/V-1.)>Tol THEN 100
150 RETURN V
160 FNEND
170 !
180 DEF FNG(T)
190 RETURN EXP(T) ! example exp(t)
200 FNEND

An application of this program to the exp(t) example in line 190,

at argument 1.1, yielded an error of 1.6E-11.
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APPENDIX B. FOURIER TRANSFORM OF GENERALIZED FUNCTION

We are interested in finding the Fourier transform of the

generalized function

exp(-aT) U(t) , a > 0 , (B-i)

where U(T) is the unit step function. Letting w - 2nf, the

integral of interest is

I = !t exp(-aT) U(T) exp(-iwT) -

- --T [exp(-aT) - 1 + 11 U(T) exp(-ir ) -

- J - 11 - exp(-aT)l exp(-iw¶) + J - U(r) exp(-iw ) -
T

0

Sina + 7 iw i sgn(-) + 1nI-!I + C'] - (B-2)

- - ln(a + iw) + ln(ica) - ij sgn(w) - lnjIw + in(2n) - C'. (B-3)

In (B-2), we used [4; page 334, 3.434 2] and 16; page 43, row 3,

column 3, with m - 1]. But since

-in/2 + lnl l for w > 0
ln(iw) - t-in/2 + iniwi for w < J) + i2 nn

- 1 sgn(w) + Injwj + i2un , n integer , (B-4)
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we can express (B-3) as

I - - ln(a + iw) + C , where C - ln(2n) - C' + i2nn . (B-5)

Thus, we have the Fourier transform pair

exp(-a¶) U(T) - - ln(a + i2nf) + C , (B-6)
¶

where C is an arbitrary constant. The reason for the presence of

C is that the generalized function U(T) is indeterminate within

an additive arbitrary multiple of the delta function S(T).

For the example in (33) of H(f) - 1/(1 + i2nf), we have

Q(f) - ln(l + i2nf). Application of pair (B-6), with a - 1, to

(39) then yields causal function

q(-r) - exp(-T) U(-r) . (B-7)
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APPENDIX C. HILBERT TRANSFORM MANIPULATION

It was noted below (45) that the Hilbert transform of

attenuation a(f) encounters integrals with logarithmic infinities

and must be handled more carefully. This problem is treated in

[3; pages 206 - 2081, by dividing the attenuation by a factor

that is quadratic in f, rather than linear. In current notation,

that result is [3; (10-67)]

18 f du (u) (C-1)
(f) - I du 2_ 2 (

- cc

If we utilize the property employed in [3; page 208, line 21,

namely that attenuation a(f) is even, we can develop (C-i) as

+W

0(f) 2f du (u)
-f-2_n u u2 _ f ) 2

0

+ C

- - J du -(u)f -u + u(-
0

f l! du =(U) I du (u) (C-3)
0 0

f du fa(_u) f dv ct(-v)
"-n -- u n f-v

0 -

+W

f - J du - - _ (f) (C-4)
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The step leading from (C-2) to (C-3) presumes that both of

the latter integrals converge separately, which need not be the

case for attenuations a(f); this is the reason for the quadratic

denominator adopted in (C-l), which guaranteed convergence of

that integral.

Rather than using Hilbert transforms and having to employ the

method of (C-i), we have resorted instead to the use of Fourier

transforms, as outlined in (46). Of course, a similar problem

arises therp, as mentioned in the sequel to (51). The method of

circumventing the difficulty, in the Fourier approach, is to

subtract out the singularities and handle them analytically, as

described in (54)-(57).

The justification of this procedure, using modified Hilbert

transform (C-i) as a starting point, is as follows. Express

given attenuation a(f) in two parts, as in (54), where residue

c 2 (f) has a convergent Hilbert transform integral

1+0 2(u)
n f du - u HIDL2 (f)) for all f (C-5)

The phase shift $(f) corresponding to attenuation a(f) is then

given by sum (56), where, following (C-i),

13 f ) W f, du uf2(C-6)
Jfu 2 -f2

u W

and 02 (f) is available as the negative of (C-5). The proof of

this last claim follows immediately from the derivation in

(C-l)-(C-4) if we replace a(f) and 8(f) everywhere by a 2 (f) and
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132(f), respectively. This is legitimate because the existence of

(C-5) for residual attenuation a 2 (f) now allows the separation

into two convergent integrals, as done in (C-3).

we do not actually use (C-5) or (C-6). Instead, (C-6) is

accomplished by using known closed form attenuation/minimum-phase

pairs for al(f) and 0l(f), while (C-5) is replaced by the Fourier

approach given in (46), with a 2 (f) and 02 (f) substituted for a(f)

and 0(f), respectively. The inverse Fourier transform integral

in the top line of (46), but now in terms of x2 (f), is

convergent.

(For interest, an example of the application of (C-6) is

afforded by attenuation-phase pair (51). This fact is

immediately verified by use of [4; 4.295 8].)
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APPENDIX D. EXAMPLES OF ATTENUATION/MINIMUM-PHASE PAIRS

In this appendix, we list a few attenuation/minimum-phase

pairs that can be used in the subtraction procedure pLesented in

(54)-(57) to eliminate the divergent integrands encountered. For

convenience of notation, we employ the Laplace t:-., sform of the

impulse response, namely

+ C

L(s) - [ dT exp(-sT) h(T) , (D-1)

0

where we have specifically limited consideration to causal

filters. The connection with the Fourier transform (1) is

H(f) - L(i2nf) . (D-2)

In the following, a, b, and c are real positive constants, and

S- 2nf.

EXAMPLE 1:

c
L(s) - s+ a

1 a2 2
I(f) - ln(a + ) - ln(c) , 0(f) - arctanlw/a) . (D-3)

In the limit as a + 0+,

z(f) - lnlwl - ln(c) , 1(f) - 1 sgn(u) . (D-4)
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EXAMPLE 2:

L(s) - s +

1 2 2
x(f) in(a + w2) - inljo - ln(c)

" "arctanU,/a) sgn(w) (D-5)

EXAMPLE 3:

C s

L(s) -(s + a)(s + b)

2 2 1 2 2
o(f) - l in(a + w + - ln(b + w ) - IoI - ln(c)22

A(f) - arctan(w/a) + arctan(w/b) - • sgn(w) . (D-6)

This attenuation reaches a minimum at w - (ab)O, at which point

the phase goes through zero.

EXAMPLE 4:

L(s) - 2 2
(S + a) + b

a(f) - 1l[a 2 + (w + b) + 1 ln[a2 + (w - b)2 ] - ln(c)
52 2

O(f) - artn + arctan( w b) (D-7)
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APPENDIX E. NUMERICAL EVALUATION OF (46)

We repeat here the cascaded Fourier transform operations

listed in (46):

a(T) a F-1 ((f)) (E-1)

q(T) - 2 2(Tr U(t) , (E-2)

a(f) + i 0(f) - F(q(r)) . (E-3)

We limit consideration to the case where attenuation a(f) is

even, which is the typical practical situation. Also, we weight

the inverse Fourier transform in (E-l) by real symmetric window

W(f), which is zero for Ilf > MA. We then get approximation

+4

-qa(,*) f df exp(i2nfx) a(f) W(f) -

-OD

+0

= 2 Re J df exp(-12nfT) m(f) W(f) -

0

MA

- 2 Re f df exp(-12nft) ai(f) W(f) -

0

2 Re s 5n a exp(-i2unnT) u(na) W(nA) a _qb(T) (E-4)
n-0

where we sample in frequency f with increment A. We also use

some integration rule like trapezoidal or Simpson; for example,

the trapezoidal rule has sn - 1, except for so = sM W 1/2.
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The approximation Sb(T), defined by the bottom line of (E-4),

has period 1/6 in T. Therefore, we compute it at the points

T  m for 0 < m < N- (E-5)

which cover a full period of qb(¶). There follows

M

-qb(-N-M) - 2A Re NZ2 s nexp(-i2nnm/N) a(na) W(n6) ,(E-6)

n-0 n

which is an N-size fast Fourier transform of M + 1 data points.

Any surplus points can be collapsed, if desired, without loss of

accuracy; see [7; pages 4 - 5], for example.

Operations (E-2) and (E-3) can be combined to read

+W

Q(f) - a(f) + i 0(f) - 2 f d¶ exp(-i2nfT) q(T) . (E-7)

0

Because all we have available is approximation qb(¶) from (E-4),

we adopt the following approximation to Q(f), based on (E-7):

a(f) a 2 J dT exp(-i2nfT) _b(¶) -
0

.5/a
S2 f dT exp(-i2nfT) _qb (-) - (E-8)

0

- exp -i2nf- b( m) Qb(f) (E-9)

M-0 N
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where wm is an integration weight. The integral in (E-8) was

limited to .5/6 in T, because approximation 3b(T) in (E-4) is

only available up to that limit without aliasing.

The period of the final approximation Qb(f) in (E-9) is NA in

f. Therefore, we limit its computation to the values

b(nft) - 2 H wm exp(-i2irnm/N) b(-m) for 0 < n < N-i (E-10)

This can be accomplished as an N-size fast Fourier transform of

N/2 + 1 data points. The final approximation to desired phase

O(f) in (E-7) is available as the imaginary part of (E-10), at

frequencies f - na. In addition, the real part of (E-10) should

be in very good agreement with specified attenuation values

(a(nA) W(n6)) used in (E-6); this serves as an accuracy check on

the complete procedure. Equations (E-6) and (E-10) are the final

results. Strictly, (E-6) should be applied only to the residual

attenuation a 2 (f) defined in (55); then (E-10) furnishes an

approximation to a 2 (f) + i 0 2 (f). A program in BASIC for the

Hewlett Packard 9000 computer, for the procedure given above, is

presented below.
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10 ! NUSC TR 8667, FOURIER PROCEDURE APPLIED
20 ' TO REAL EVEN FUNCTION OF FREQUENCY
,? Deltaf=5. SAMPLING ItCPEMENT IN FREQUENCY
40 Fma×=900. I MAXIMUM FREQUENCY
50 N=16384 1 SIZE OF FFT
60 A=260. i FILTER PARAMETERS
70 B=330. I FOR
80 C=-.55E8 EXAMPLE C
90 COM A,B,C

100 REDIM Cos(0:N/4), X(O :N-1),Y(0:N-1)
110 DIM Cos (4096),X(16384),Y(16384),Realeven(25000), Phase(6: 100)
120 DOUBLE N,M,Ns,Ms,N2,M2 INTEGERS
130 T=2.*PI/1'
140 FOR 1-s=0 TO N/4
150 Cos(Ns)=COS(T*Ns) I QUARTER-COSIINE TABLE
160 NEXT Ns
170 M=Fma×/Del t af'
180 REDIM Real even(0:M)
190 CALL Input _realeven(Deltaf',Fma×,Realeven'(*)) RESIDUAL
200 MAT X=(O.) I ATTENUATION ALPHA2
210 MAT Y=(0.)
220 X(0)=.5*Realeven(0)
230 Ms=M MODULO N
240 X(Ms)=.5*Realeven(M)
250 FOR Ns=l TO M-1
260 Ms=Ns MODULO N COLLAPSING
270 X(M_)=X(Ms)+Realeven(Ns)
280 NEXT Ns
290 CALL Fftl4(N,Cos(*),X(*),Y<*)) FOURIER TRANSFORM
300 N2=NHo2 I INTO TIME DOMAIN
310 GINIT
320 PLOTTER IS "GRAPHICS"
330 GRAPHICS ON
340 WINDOW -N2,N2,-6,2
350 LINE TYPE 3
360 GRID N/8,I
370 PRINT "FOURIER TRANSFORM (TIME DOMAIN)"
380 FOR Ns=-N2 TO N2
390 Ms=Ns MODULO N
4003 PLOT Ns,LGT(ABS(X(Ms))+I.E-99) I TIME DOMAIN FUNCTION
410 NEXT Ns
420 PENUP
430 PAUSE
440 MAT Y=(. )
450 T=4./N I 2 DeltaC * 2 / (N Deltaf)
460 FOR Ms=O TO N2
470 ?f(Ms)=X<Ms)*T I DOUBLE FOR POSITIVE TIME
480 NEXT Ms
490 X(O)=X(0)*.5
500 X(N2)=X(N2)*.5
510 FOR Ms=N2+1 TO N-1
520 X(Ms)=0. 1 ZERO FOR NEGATIVE TIME
530 NEXT Ms
540 CALL Fftl4(N,Cos(*),X(*),Y(*)) ! FOURIER TRANSFORM
550 M2=HM*2 1 INTO FREQUENCY DOMAIN
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560 GCLEAR
570 WINDOW 0,M2,-l,1
580 LINE TYPE 3
590 GRID N/16,.2
600 PRINT "ORIGINAL INPUT (FREQUENCY DOMAIN)"
610 FOR Ns=O TO MIN(M,N2)
620 PLOT Ns,Realeven(Ns) ! ORIGINAL INPUT
630 NEXT Ns
640 PENUP
650 PAUSE
660 LINE TYPE I
670 FOR Ns=O TO M2
680 PLOT NsX(Ns) ! F-T-F APPROXIMATION
690 NEXT Ns
700 PENUP
710 PAUSE
720 DATA -38.6,-48.2,-54.8,-60.4,-76.2,-82.1,-94.5,-103.8,-109.1,-117.1
7:30 DATA -124.1,-134.0,-143.1,-152.9,-163.1,-172.4,179.1,171.1,164.2,157.9
740 DATA 152.8,147.1,142.8,135.8,131.9,128.7,122.8,118.7,115.1,I10.6
750 DATA 105.9,103.4,102.8,99.9,98.6,93.8,93.1,91.2,89.6,89.5
760 DATA 89.6,89.6,89.2,88.1,85.6,84.5,82.0,81.1,79.0,74.7
770 DATA 71.4,66.5,61.3,55.1,48.1041.6,34.0,29.3,22.0,16.1
780 DATA 12.2,5.7,2.4,-3.1,-6.5,-11.3,-16.2,-21.2,-25.7,-29.7
790 DATA -33.4,-37.0,-40.7,-43.5,-47.0,-49.5,-51.6,-54.1,-56.2,-59.4
800 DATA -61.0,-62.4,-64.2,-66.7,-68.7,-71.4,-74.6,-78.1,-81.4,-83.8
810 DATA -88.7,-91.3,-95.0,-98.7,-103.1
820 READ Phase(*) ! MEASURED PHASE IN DEGREES
830 FOR Hs=22 TO 100
840 Phase(Ns)=Phase(Ns)-360. ! UN-WRAPPING OF PHASE
850 NEXT Ns
860 MAT Phase=Phase*(-PI/180.) ! MEASURED PHASE IN RADIANS
870 T=2.*PI*Deltaf
880 FOR Ns=e TO N2
890 W=T*Ns
908 Phaseapp=RTN((W-B)/A)+RTH((W+B)/R) I PHASE BETA1 OF APPROX.
910 X(Ns)=Phaseapp+Y(Ns) 1 CALCULATED PHASE IN RADIANS:
920 NEXT Ns 1 BETA = BETRI + BETA2
930 GCLEAR
940 WINDOW 0,180,0,PI*1.25
950 LINE TYPE 1
960 GRID 20,PI*.25
970 PRINT "PHASE (FREQUENCY DOMAIN)"
980 FOR Ns=e TO 188
990 PLOT Ni,X(Ns) I PHASE VIA FOURIER PROCEDURE

1000 NEXT Ns
1010 PENUP
1020 LINE TYPE 3
1030 FOR Ns=6 TO 100
1040 PLOT Ns,Phas#(Ns)-Ns*.0448 1 MEASURED PHASE WITH
1050 NEXT Ns ! TIME DELAY CORRECTION
1060 PENUP I OF 1.43 MILLISECONDS
1070 PAUSE
1080 END
1090 I
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1100 SUP Ffd,4(DOUBLE N,REAL Cos?*),X(*),Y(*)) !N(w2'14xl6384; e SUBS
1110 DOUBLE Log2n,NI,N2,N3,N4,J,K ! INTEGERS < 2-'31 = 2,147,483,648
1120 DOUBLE 11, 12, 13, 14, 15, 16,17, 18,19,110,111,112,113, 114,L(0: 13)
1130 IF N=1 THEN SUBEXIT
1140 IF N>2 THEN 1220
1150 A=X(O)+X(1)
1160 X( I)=X(O)-X( I)
1170 X(O)=A
11se A=Y(8)+Y(l)
1190 Y(I)=Y(9)-Y(1)
1200 Y(O)=R
1218 SUPEXIT
1220 A=LOG(N).'LOG(2.)
1230 Log2n=A
1240 IF RDS(A-Log2n)(1.E-8 THE1N 1270
1250 PRINT "N =";N;"IS NOT A POWER OF 21 DISALLOWED."
1260 PAUSE
1278 N=N-'4
1280 N2=N1+1
1290 N3=N.2.1
1308 N4=t-43+NI
1318 FOR 11=1 TO Log2n
1328 12=2^(Log2n-11)
1330 13=2*12
1340 14=N1/13
1350 FOR 15=1 TO 12
1368 I6=(15-1)*14+1
1370 IF I6<=112 THEN 1418
1380 R1=-Cos(144-16-1)
1398 A2=-Cos(16-NI-1)
1400 GOTO 1438
1418 Al=Cos(16-1)
1420 A2=-Cos(N3-16-1)
1430 FOR 17-0 TO N-13 STEP 13
1448 18=17+15-1
1450 19=18+12
1460 T1=X(18)
1478 T2=X(19)
1488 T3=Y(18)
1490 T4=Y(19)
1500 A3=T1-T2
1518 A4=T3-T4
1520 X(18)=T1+T2
1530 Y(18)=T3+T4
1540 X(19)-A1*A3-A2*A4
1550 Y(19>=Al*A4+A2*A3
1560 NEXT 17
1570 NEXT 15
1580 NEXT 11
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1590 ll=Log2n+1
1600 FOR 12=1 TO 14
1610 L(12-1)=I
1620 IF 12>Log2n THEN 1640
1638 L(12-1)=2^(11-12)
1640 NEXT 12
1650 K=O
1660 FOR 11=1 TO L(13)
1678 FOR 12=11 TO L012) STEP L(13)
1688 FOR 13=12 TO L(II) STEP L(12)
1690 FOR 14=13 TO L(10) STEP L(11)
1780 FOR 15=14 TO L(9) STEP L010)
1710 FOR 16=15 TO L(8) STEP L(9)
1720 FOR 17=16 TO L(7) STEP L(8)
1730 FOR I8=17 TO L(6) STEP L(7)
1740 FOR 19=18 TO L(5) STEP L(6)
1758 FOR 118=19 TO L(4) STEP L(5)
1760 FOR 111=110 TO L(3) STEP L(4)
1778 FOR 112=111 TO L(2) STEP L(3)
1780 FOR 113=112 TO L(1) STEP L(2)
1798 FOR l14=113 TO L(O) STEP L(1)
1888 J=114-I
1818 IF K>J THEN 1880
1828 R=X(K)
1830 X(K)=X(J)
1840 X(J)=A
1850 A=Y(K)
1860 Y(K)=Y(J)
1878 Y(J)=R
1880 K=K+1
1898 NEXT 114
1980 NEXT 113
1910 NEXT 112
1920 NEXT III
1930 NEXT 110
1940 NEXT 19
1950 NEXT 18
1960 NEXT 17
1970 NEXT 16
1980 NEXT 15
1990 NEXT 14
2000 NEXT 13
2010 NEXT 12
2020 NEXT I1
2030 SUBEND
2040
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2050 SUB Input realeven(Deltaf,Fmax,Realeven(*))
2868 DOUBLE Ns iNrerER
2070 ALLOCATE Db(6t:18) ! 30:900 HZ
2080 DATA 41.3,44.3,46.1,47.6,49.9,51.4,52.9,54.4,54.8,56.3
2090 DATA 57.0,57.4,57.9,58.6,59.0,59.1,59.8,58.9,58.9,58.8
2100 DATA 58.6,58.1,58.2,58.1,58.0,57.9,57.8,57.2,56.9,56.7
2110 DATA 56.6,56.4,56.3,56.2,55.7,55.6,55.4,55.8,54.9,55.2
2120 DATR 55.2,55.7,55.7,56.1,56.1,56.6,56.9,57.5,58.3,58.6
2130 DATA 59.0,59.7,68.3,6e.7,68.9,61.1,61.I,61.2,61.0,68.9
2140 DATA 68.7,68.6,68.4,60.2,68.0,59.9,59.6,59.4,59.3,58.7
2158 DATR 58.5,58.3,57.8,57.5,57.3,57.0,56.7,56.3,56.1,55.9
2168 DATA 55.7,55.5,55.6,55.6,55.4,55.3,55.4t55.3,55.6,55.3
2178 DATR 55.4,55.0855.0,55.8,54.8
2188 REDIM Db(6el8)
2190 READ Db(*)
2208 MAT Db=Db+110.) ! MEASURED DD GAIN
2210 REDIM Db(6:tl8)
2220 FOR Ns=I@I TO 18 0 AUGMENTED DB GRIN
2230 F=Deltaf*Ns
2240 Tt=(F-558.)*.84
2258 T2=(F-580.)*.04
2268 Db(N$)=154.8-5.*EXP(-TI*TI)-5.*EXP(-T2*T2)
2278 NEXT Hs
2288 MAT Realeven=(O.)
2290 CON AB,C
2388 A2=A*A
2318 B2=B*B
2328 C2=C*C
2330 DI=(R2+B2)*(A2+B2)
2348 D2=2.*(R2-B2)
2358 T=2.*PI*Deltaf
2368 FOR Ns=6 TO 180
2378 W=T*Ns
2388 W2=W*W
2398 W4=W2*W2
2488 P=C2*W4/(DI+D2*W2+W4)
2418 Attenapp=-.5*LOG(P> A APPROX. RTTEN. ALPHR1
2428 Rtten=Db(Hs)/(-8.686) A ATTENUATION ALPHA
2438 Realeven(Ns)=Rtten-Attenapp ! RESIDUAL ATTEN. RLPHR2
2448 NEXT Ns
2458 SUBEND
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ABSTRACT

The response of equispaced arrays, either linear, planar, or
volumetric, to distributed spatial fields, typically encounters
integrals which involve the kernel sin(Mx)/sin(x) or its square.
Since this kernel oscillates rather fast with x for large M and
does not decay with x, numerical integration of such functions
can be very time consuming. By resorting to Parseval's theorem,
such integrals can be significantly simplified, requiring only
the Fourier transform of the complementary part of the integrand.
This procedure is investigated and applied to several typical
examples; programs for the examples are also included.
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EVALUATION OF INTEGRALS AND SUMS

INVOLVING [sin(Mx)/sin(x)] n

INTRODUCTION

The response of an equiweighted equispaced line array to a

distributed field involves the kernel sin(Mx)/sin(x) or its

square, depending on whether the voltage or power response,

respectively, is of interest (1,21. Numerical evaluation of such

integrals can be very time consuming for two reasons: this kernel

oscillates quickly with x for large M, and it does not decay with

x. This necessitates fine sampling in x and large integration

regions, both of which can lead to a significant computational

burden, especially for two-dimensional or three-dimensional

arrays. The object of this report is to give an alternative

numerical procedure that can be very advantageous in some cases,

and, in fact, leads to closed forms for some examples.

The procedure is also applied to summations involving the

same kernel. Its utility depends on the rate of decay of the

complementary part of the original integrand, as compared with

the Fourier transform of this component. In any event, an

alternative is presented for the user to consider in any

numerical investigation.

1/2
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GENERAL APPROACH

For arbitrary function g(t), define its Fourier transform as

G( - f dt exp(-iwt) g(t) . (1)

(Integrals without limits are over the range of nonzero

integrand.) Then Parseval's theorem states that the following

two alternative integrals are equal:

V - J dt g(t) h*(t) - f dw G(w) H*(w) (2)

Here, H(w) is the Fourier transform of h(t). Now, if H(w) takes

on a noticeably simpler form than h(t), then the second integral

in (2) can offer an attractive alternative to the first integral

in (2). That will indeed be the case here.

3
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CASE 1

For integer M > 1 and constant y > 0, consider the special

choice of h(t) as

M-i
hl(t). sin(Myt) - Z exp[iyt(2n+i-M)J -

n-0

M-1

- exp(iytm) , (3)
m-l-M

where the prime on the latter sum denotes skipping every other

term. Then the Fourier transform, according to (1), is

M-i

H1 (w) - 2n 6(w - Ym) (4)

Substitution of (3) and (4) in (2) yields

N-1

V1  dt g(t) sin(yt) - G(ym) . (5A)

mn 1-M

This result indicates that if G(w), the Fourier transform of

g(t), can be evaluated, then the t integral in (5A) is given by a

finite sum of equispaced samples of G(w) at increment 2y. The

(complex) function g(t) in (SA) is arbitrary, except that the

integral must converge. When G(w) cannot be analytically

evaluated, then proper application of a fast Fourier transform

procedure to g(t) can be tailored to yield precisely the equi-

spaced samples required for the right-hand side of (5A); this

technique and a program is detailed in appendix A.

4
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An alternative more explicit form of (5A) illustrates the

calculations required:

(N-•2 G(2yn) for M odd

n-(l-M)/2

Vi - (SB)

Mt1 G(y+2yn) for M even

n--M/2

If function G(w) is even in w, then (5A) simplifies to

M-i

G(O) + 2 G(ym) for M - 1,3,5,...

m-2

V - (6)

M-1

2 j G(ym) for M - 2,4,6,...

m-i

A program for (6) is given in appendix B.

CASE 2

For integer M > 1 and constant y > 0, consider the

alternative special choice of h(t) as

h2 (t) - Lsin(Myt) 2 exp[iyt(2n-2k)J - (7A)

n,k-0

M-1

1 (M - Iml) exp(i2ytm) (7B)
m-l-M

5
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where we used (3). There is no prime on the summation in (7B)

because all terms from 1-M to M-1 are to be included. The

Fourier transform of h 2 (t) is

M-1

H() - 2n (M - Iml) A(w - 2ym) (8)
m-l-M

The use of (7A) and (8) in (2) yields

M-1

V j dt g(t) in(Myt) "2 (M - Iml) G(2ym) . (9)
M-l-M

Again, the integral of interest is given by a finite sum of

samples of the Fourier transform of g(t), also at increment 2y

in w. The fast Fourier transform technique and program presented

in appendix A is relevant here also. If G(w) is even in w, then

we can express (9) as

M-1

V2 - M G(0) + 2 T. (M - m) G(2ym) for all M > 1 (10)

M-i

A program for (10) is given in appendix B.

CASE 3

For arbitrary weights {w m and frequencies fm ), with

h3 (t) - wm exp(iymt) , (1A)

m

then we have a generalization of (3), with

6
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H 3 () - 2n T. w 6(w - (m .(11B)

m

(Summations without limits are over the range of nonzero

summand.) Use of these expressions in general result (2) yields

V dt g(t) w* exp(-iymt) - w G1 (1Ic)V3 • tgt m m "

m m

Again, the Fourier transform of g(t) is required, but now at

general arguments (y

CASE 4

Function h 2 (t) in (7) is a special case of the weighted array

power response

h4 (t) - wk exp(-i2ytk) 2- (m) exp(-i2ytm) , (12A)
4 IT k k I m

where +(m) is the autocorrelation of the weights:

*(m) - wk wk~ - * (-m) (12B)

k

The integr~l in (9) is then generalized to

7
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V4 dt g(t) h*4t - dt glt) wk exp(-i2ytk)

k

- +(m) G(2ym) ,13A)

m

upon use of (12A), where g(t) can be complex and nonsymmetric.

Thus, integral V4 requires the autocorrelation of weights (wk)

and the Fourier transform of g(t) for its evaluation. The

earlier result in (9) corresponds to weights wk - 1 for

1 < k < M4.

When function g(t) is real (but possibly nonsymmetric) and

the weights are real, (13A) can be simplified to

V4 - +(0) Gr (0) + 2 E Om) Gr (2ym) ,

m>1

where Gr (w) is the real part of Fourier transform G(o) in (1).

A program for (13B) is given in appendix B.

8
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EXAMPLES

EXAMPLE A

The first example of interest is

1

ga(t) t 2 + 2 ' > 0 (14)
(t-/J) +

Its Fourier transform is

Ga()) -(w exp(-ip•w-1wj) (15)

for which the real part is

G (W) - 1 cos(pw) exp(-01WI) . (16)
ar

Since integral (5) is obviously real for example (14), we

obtain

M-1
dt sin(Myt) . (Ti) (17)

Via (t-) 2 + 12 sin(yt) -i Gar

Substitution of (16) in (17) yields the closed form result

V dt sin(Myt)

Via - (t-P)2 + t 2 sin(yt)

-E +{1 E 1 (1 - E2) for M even~

" "D EM+3 CM-1 - EM+l CM+ , (18)

S(1 - for M odd J

where

Em = exp(-Oym) , - cos(!uym) , D - 1 - 2 E2 C2 + E4. (19)

9
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A program for (18) and (19) follows; it is written in BASIC for

the Hewlett Packard 9000 computer.

10 INPUT M,Beta,Gamma,Mu I Beta > 0, Gamma > 0
20 B-Beta*Gamma
30 C-Mu*Gamma
40 E-EXP(-B*2)
50 IF (M MODULO 2)-i THEN 80
60 F-COS(C)*SQR(E)*(l-E)
70 GOTO 90
80 F-.S-.5*E*E
90 A-E*COS(C*(M-1))-COS(C*(M+1))

100 A-A*EXP(-B*(M+1))+F
110 Vla=A*2*PI/(Beta*(1-2*E*COS(C*2)+E*E))
120 PRINT Vla
130 END

When we instead substitute (14) and (16) in (9), there

follows

v dt 2sin(Myt) 2
V2a j(t_ +2 Lsin(yt) J I

M-1
n E (M - Imi) cos(2pyrm) exp(-20ylml) (20)

m-l-M

This finite sum can be written in compact form by use of

[3; 0.113). Namely, define here

E - exp(-21y) , C - cos(2#y) , S - sin(2#7y)

EM - exp(-20yM), CH - cos(2uYM), SM . sin(2pyM),

AE 2  B1 + E 2  D - B - 2 E C. (21)

Then

10
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2 Jt [sin(Myt)]2
V2a " (tp) 2 + 12 sin(yt)

2n! A- (CB - 2 E)(1l ~E CM) + S A EN SM)]* (22)

A program for (21) and (22) follows.

10 INPUT M,Beta,GammaMu I Beta > 0, Gamma > 0
20 Tb=2*Beta*Gamma
30 Tm=2*Mu*Gamma
40 E-EXP(-Tb)
50 A-E*E
60 B-l+A
70 A-1-A
80 C-COS(Tm)
90 D=B-2*E*C

100 Em-EXP(-Tb*M)
110 T-(C*B-2*E)*(1-Em*COS(Tm*M))
120 T-T+SIN(Tm)*A*Em*SIN(Tm*M)
130 T=.5*M*A-T*E/D
140 V2a-T*2*PI/(Beta*D)
150 PRINT V2a
160 END

EXAMPLE B

The next example *o be considerod is

(t) 1 sin(at)>>

(t~t))2 + 2 ,x • > 0 , = > 0 . (23)
b 2-p + 0 2 a

Since gb(t) is a product of two functions, its Fourier transform

Gb(w) is given by a convolution of the individual transforms.

The Fourier transform of the first term in (23) has already been

encountered in (15), and the Fourier transform of the second term

in (23) is a rectangle located on interval (-a, a) in w.

Therefore, Gb(w) is given by convolution

11
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Gb(w) - f du exp(-ipu-01uj) . (24)
W--a

Since gb(t) in (23) is real, we need only evaluate the real part,

Gbr(w), of Gb( ). With the aid of auxiliary variables

C = cos(Pw), SU - sin(pw), C = cosh(ow), S, - sinh(Ow),

C - cos(uo), S - sin(px), C - cosh(Oc), S - sinh(Oa),

B1 - CW CW (a C - P SM) + so S (P C + a Sm),

B2 - S C (0 CW - P S ) + C S (/ C + 0 S W), (25)

we find that Gbr (w) is given by

0- exp(-_0a) B1  for 0 < w <

Gbr(W) - n j . (26)br M3 ( 2+,02) exp(-Ow) B 2 for a < w

To complete the description, we observe that Gbr (w) is even in w

because gb(t) is real. A program for Gbr(w) follows, where we

have made the following identifications: W w w, A a a, B m 0,

U 'U .

10 DEF FNGbr(W,A,B,U) 100 IF Wa<A THEN 150
20 Wa-ABS(W) 110 Ra-l./Ea
30 F=PI/(A*B*(B*B+U*U)) 120 T-(Ra-Ea)*Ca*(B*Cw-U*Sw)
40 Ea-EXP(-B*A) 130 B2-.5*(T+(Ra+Ea)*Sa*(U*Cw+B*Sw))
50 Ew-EXP(-B*Wa) 140 RETURN F*Ew*B2
60 Ca-COS(U*A) 150 Rw-1./Ew
70 Cw-COS(U*Wa) 160 T-(Rw+Ew)*Cw*(B*Ca-U*Sa)
80 Sa=SIN(U*A) 170 Blm.5*(T+(Rw-Ew)*Sw*(U*Ca+B*Sa))
90 Sw-SIN(U*Wa) 180 RETURN F*(B-Ea*B1)

190 FNEND

12



TR 8689

If we now employ (23) in (5), we obtain

M-i
V dt sin(ct) sin(Myt)G(

Vlb J (t-p 2 + 02 at sin(yt) "r Gbr(T) (27)
m 1-M

where Gbr(c) is given by (25), (26), and its even property.

Since there is a break in the analytic form for Gbr( ) at w - +a,

it is not reasonable to perform the summation in (27) in closed

form; those terms in (27) for y1ml ý a utilize the upper line of

(26), while those for y1ml Ž a utilize the lower line of (26).

However, since G br(w) is even in w, the simplification in (6) is

applicable.

Instead, when (23) is substituted in (9), there follows

M-1

V dt sirn(t) [sin(Myt)]-mZ (M - Im,) Gbr (2ym),V2b " (t_/))2 + is2 at [sin(Tt) b

M--M
(28)

where Gbr () is given by (25) and (26). Again, the break in form

of Gbr(w) at w - +a precludes a closed form result for the

summation in (28); also, the simplification in (10) is

immediately applicable to (28).

13
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EXAMPLE C

The final example is

gc(t) -2 12 2 , > 0 > 0. (29)
(t-) 2 + 02 [ t

The Fourier transform of the second term in (29) is a triangle

located on interval (-2a, 2a) in w. Therefore, Gc (w) is given by

convolution

w+2oc

Gc(,) - du exp(-iu-Olul) (1 - I -u- (30)
w-2ot

Because g c(t) is real, only the real part of (30) is needed.

This tedious calculation has been carried through, with the

following result; define auxiliary variables

R i 2_/j 2 1 20p, D 0 2 E 3 = exp(-Ow), E = exp(-20m),

C a cosh(20c), S = sinh(20m), C - cos(2pa), S - sin(2pa) ,

L 3 = cosh(ow) , S§ - sinh(ow) , CO - cos(pw) , Sw = sin(pw) ,

C= C (R C - I S L) + SW SO) (R S + I Ca)

C2  Ca Ca (R C0  - I S ) +S S (RS + I C03 ,

C =R C - I S . (31)

Then we find that real part

D 0(2 -w)- WC +EaC for0<w<2a

Gcr ( ) = R ' 4 .(32)
2a 2 (ID 2 - E C + E C2 for 2t <

14
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Also, G cr() is even in w. A program for Gcr () is listed below,

where W m w, A a , B a 0, U pt'.

10 DEF FNGcr(WeA,B,U) I A > 0 , B > 0
20 Wa-ABS(W)
30 Tb-2.*A*B
40 Tu-2.*A*U
50 Bw-B*Wa
60 Uw-U*Wa
70 B2-B*B
80 U2-U*U
90 R=B2-U2

100 I=2.*B*U
110 D-B2+U2
120 Ew-EXP(-Bw)
130 Ea-EXP(-Tb)
140 Ca-COS(Tu)
150 Sa=SIN(Tu)
160 Cw-COS(Uw)
170 Sw-SIN(Uw)
180 C=R*Cw-I*Sw
190 IF Wa<2.*A THEN 250
200 Ra=l./Ea
210 C2=.5*(Ra+Ea)*Ca*C
220 C2-.5*(Ra-Ea)*Sa*(R*Sw+I*Cw)+C2
230 T=Ew*(C2-C)
240 GOTO 290
250 Rw-1./Ew
260 C1-.5*(Rw+Ew)*Cw*(R*Ca-I*Sa)
270 C1-.5*(Rw-Ew)*Sw*(R*Sa+I*Ca)+C1
280 T-D*(Tb-Bw)-Ew*C+Ea*C1
290 RETURN PI*T/(Tb*A*D*D)
300 FNEND

We now substitute (29) into (5) and get

[ ___________ _______ 2M-1

V dt 2[sin(at) 2 sin(Myt) - G (m) (33)
Ic j (t-J)2 . s2 at sin(yt) Gcr( (

m-1-M

where Gcr(w) is given by (31), (32), and its even character. The

bteak in form in (32) at w - ± 2 a precludes a closed form for the

sum in (33). ;.owever, (6) is still applicable.

15
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When (29) is utilized in (9), there follows

[ dt rsin(ctt) ] inMt

V2c J t_2 + 12 ct [sin(yt)]

N (M - Iml) G cr(2ym) .(34)

Equation (10) may also be employed here.

SPECIAL CASES

If we set M = 1 in (17), there follows

J dt .G (0) (35)
(t_- 2 + 12 ar is

where we used (16). The same case in (27) yields

J dt sin(at) .G (0) -
(t-P)2 + 12 Mt br

n 1 [•- exp(-a) [8 cos(4 ux) - p sin(u)]} , (36)

upon use of (26) and (25). Finally, from (33),

16
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r dt [sin( t) 12 G (0)

I (t-_) 2 + 02 at I cr

n 2 (O2+ 2 R + E (R C - I S)) , (37)

2 23(0 2 +# 2 )

using (32) and (31).

17/18
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APPLICATION TO SUMS

In this section, it is more convenient to use Parseval's

theorem (2) in the form

V - f dt g(t) h*(t) - df G(f) H*(f) , (38)

where Fourier transform

G(f) f dt exp(-i2nft) g(t) (39)

Now, we take as our candidate h(t) function,

h(t) - p(t) A6S (t) , (40)

where 66(t) is the infinite impulse train

A(t) - . 6(t - ka) (41)

k

The Fourier transform of h(t) is then

H(f) - P(f) 0 6 1 (f) = P(f - ,(42)

k

where P(f) is the Fourier transform of p(t), * denotes

convolution, and we have utilized the fact that the Fourier

transform of impulse train 68 (t) is another impulse train,

Substitution of (40) and (42) in (38) yields

19
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V - A g(ka) p*(kA) - df G(f) P(f - (43)

k k

For general p(t) and P(f), this will not be a useful relation,

since the right-hand side of (43) is an infinite sum of

integrals. However, we will be interested here only in the

special cases of

p(t) - sin(Myt) n n integer . (44)
Isin (yt) I

CASE n - 0

For n = 0, the above relations specialize to

p(t) - 1 , P(f) - 6(f)

H(f) - ~ 6(fk)
k

Vo- Mi g(ka) - 5 G k (

k k

This is a discrete version of Parseval's theorem. Although one

infinite sum has been traded for another, we can now choose that

alternative that has the most rapidly decaying (and/or easily

computed) summand for numerical evaluation.

20
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CASE n - 1

Now we have, via (3),

M-1

p(t) - sinl(yt) " exp(iytm) . (46)
sin(yt) T

m-i-M

There follows

M-1

P(f) - 6(f - 2,
rn.i-M-l-M

M-i

H(f) = 6Zf k S2n) '

k m-i-M

V1 - A g(ka) sin(yatk) (47)

k

M-1

-zG + I-) .(48)
k m-i-m

Again, we have an alternative infinite sum (48) that

hopefully decays faster than the original sum (47). The

sin(Mx)/sin(x) term does not help convergence in (47) because

this term never decays for large x. Although (48) is a double

sum, the summation on m only contains M terms; the utility of

(48) depends heavily on the asymptotic decay of G(f) for large f.

21
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CASE n - 2

With the aid of (7), we now find

rsin(Myt) 2 -

p(t) - Lsin(Myt) 2 " (M - Iml) exp(i2ytm)

-sn~t I - jm)T. x~

m-l-M

14-1

fn-i-m-l-M

m-1

11(f) - Z (M - Irni) 6f - X)
k m-i-M

V2 - A g(kA) [sin(Nyk) 2 (49)

k

M-1

57j (I'4 - Irni) G(k + Y-) (50)
k m-i-M

EXAMPLE

Consider, as in (14) and (16),

1

ga(t) - 2 2
(t-p) + 2

R

G ar(f) - W cos(2nuf) exp(-2oIf1 ) (51)

The summations in (47) and (49) are very slowly decaying, leading

to difficulty in attaining accurate results. The alternatives in

22
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(48) and (50), on the other hand, have exponential decay and can

be evaluated quite accurately. The additional examples given

earlier in (23) - (26) and in (29) - (32), along with the

corresponding programs, lend reasonable alternatives to some

otherwise lengthy numerical calculations.

SOME RELATED SUMS

Here, we collect a few closed form results for sums involving

the sin(Mx)/sin(x) kernel. For ease of notation, define

SN(mk) - sin(Mkir/N)N sin(kn/N) (52)

Observe that

N(k for k - 0, +2N3, +

S N(Mk) - tM(-l)M-1 for k - ±N, +3N,... (53)

Then, we find the sum over one interval to be

N-1 Mfor M evenT. S N(M,k) ( 54)

k-0 N(1 + 2J) for M odd

where

J - INT(-1) (55)

23
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The sum over a double interval is

2N-1 fO for M4 -0,4....

Z SN(M,k) - (56)
k-0 l2N for M - 1,3,... ,2N-1

The correlation on the second variable of SN is

N-1

Z SN(Mk) S N (M,k+j) - N SN((M,j) for 0 < M < N and all j. (57)

k-0

Finally, the correlation on the first variable is

N-1

T. SN( 1M,k) SN(M+ 2 Lk) - M(M + 2L) +

k-0

M(N - m - 2L) for 0 < M, + L < N

+N , (58)

IN(3M + 2L -2N) - M(M + 2L) for N < M + L

for all M, L, N, whe;e

M - M MOD N , L-L MOD N (59)
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SUMMARY

Extensions to integrals involving [sin(Mx)/sin(x)]n for n > 2

are possible, based upon the results presented here. For

example, starting from (12A) for arbitrary weights, we could

consider

h (t) - h2(t) - qi(p) exp(-i2ytp) , (60)

p

where

p)- #(m) **(m-p) (61)

m

is the autocorrelation of sequence (+(m)) defined in (12B).

Therefore, Fourier transform

H5W)- 2n '. (p) 6(u + 2yp) ,(62)

P

giving rise to

V 5 • dt g(t) h5 (t) - i*,(p) G(2yp) (63)
p

The case of equal weights {wk0 in (12A) now corresponds to n - 4

in the sine function ratio above, and w(p) is the autocorrelation

of a triangular sequence.
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The evaluation of integrals and sums involving the term

(sin(Mx)/sin(x)]n can often be simplified by the use of

Parseval's theorem because this term has a Fourier transform

which is a finite sum of delta functions. Major effort can then

be concentrated on getting the Fourier transform of the

complementary part of the integrand. This procedure has been

applied here to several examples which arise in evaluation of the

response of equispaced arrays to distributed spatial fields. For

more complicated fields, a fast Fourier transform procedure

combined with the above result leads to a very efficient method

of integral evaluations; see appendix A. Applications of this

procedure have been made in 151.
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APPENDIX A - USE OF FAST FOURIER TRANSFORM

The summations for V1 and V2 in (5) and (9), respectively,

require the evaluation of the Fourier transform of g(t), namely

G(w), at equispaced increment 2y. But this latter function can

be approximated by means of the trapezoidal rule according to

G(w) dt exp(-iwt) g(t) -

A E exp(-icAn) g(nA) a G(w) - • G(w - n2" , (A-i)

n n

where A is the sampling increment in t. The latter summation in

(A-i) indicates aliasing lobes separated by 2n/A on the w axis.

In order to control the aliasing in (A-i), we must choose A small

enough, say A < A0. Then samples of aliased approximation G(w)

in (A-i) at multiples of 2y are given by

G(2ym) - f t. exp(-i2yfmn) g(n6) . (A-2)

n

Now since A is arbitrary, except for upper limit A0, choose

A - N' (A-3)

where N is an integer and 2y is the prescribed increment in w.

In order that A be less than Ao0 , we must take integer

N > (A-4)
7A0

Use of (A-3) in (A-2) gives the approximation samples
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G(2ym) - A T. exp(-i2nmn/N) g(nA) (A-5)

n

N-1

- A T exp(-i2nmn/N) gc (na) ,(A-6)

n-0

where "collapsed" sequence [4; pages 4 - 51

9 g(na + kNA) for 0 < n < N - 1 . (A-7)gcn)

k

The manipulation from (A-5) to (A-6) is exact; it avoids

truncation error normally associated with functions g(t) which

decay slowly with t. The sum on k in (A-7) must be carried out

(for each n) until negligible values for g are encountered for

both positive as well as negative values of k.

Equation (A-6) indicates that values of G(2ym) for m - 0 to

N - I are available by an N-point fast Fourier transform when N

is a power of 2. These are exactly the values of G(w) needed for

Lhe sum in (5B) for M odd, as well as for the sum in (9) for all

M. The values for negative m required in (5) and (9) are

available in locations m mod N. A program for these cases is

attached at the end of this appendix.

In order to get all the desired values of G(2ym) required for

(9), without aliasing, we also require that N/2 > M. (On the

other hand, the requirement for (5), with M odd, is slackened to

N > M.) Thus, the final condition on integer N is

N > max (--, 2M) for (9) (A-8)
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For the case of (5) with M even, where the increment on w is

2y, but starting at w - y, we return to (A-I) to find that

G(y + 2ym) - a T. exp(-iyan - i2yamn) g(nA) (A-9)

n

The same choice of A in (A-3) now yields

G(y + 2ym) - a E exp(-i2nmn/N) exp(-inn/N) g(nA) .(A-1)

n

This result is identical to (A-5) except that g(nA) must be

replaced by

exp(-inn/N) g(n6) a §(nA) . (A-i1)

Calculation of the collapsed version of § is eased by the

observation that

§c (n&) § , (nA + kNA)-

k

- Iexp(-in(n + kN)/N) g(nA + kN6) -

k

-exp(-inn/N) (-1)k g(nA + kNA) for 0 < n < N - 1 , (A-12)
II

thereby leading exactly to

N-1

G(y + 2ym) - A E exp(-i2nmn/N) c( (A13)

n-0
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The leading phase factor in (A-12) only needs to be evaluated at

N different values (perhaps by recurrence), and the sum in (A-12)

requires differencing of "adjacent" samples of g spaced by N6,

rather than the straight summation previously adequate for (A-6)

and (A-7). Condition (A-8) applies here as well.

PROGRAM FOR (5B) WITH M ODD, AND FOR (9)

10 TP 8689?, FFT EVALUATION OF (9) FOR ALL M, RIID (5) FOP M ODD
20 T1=-3000 I LEFT END RF:GUHENIT FOP 9 t)
:=o T2=3000 I RIGHT END ARGUMENIT FOP g(t)
48 D1_Itao=.05 I STARTING Delta, (A-4)
50 M 1-7 1 INTEGER IN (9) AND (5)
60 Gaftra=.785 I CONSTANT IN (9) AND (5)
7 T-P I /(Gamma*De It ao)
80 14= I
90 IF H>MRX(T,2*M) THEN 120 ! (A-8)

100 H-=1*2 1 11 = SIZE OF FFT
110 GOTO 90
120 fie 1 t. a-PI/(N*Gamrna) 1 (A-3), INCREMEIIT INi t
130 DOUBLE F1,N,NH,N1,N2,Nn ! INTEGERS
140 PEDIM Co.(N/4),X(g:N-1 ),Y(e:N-I)
150 DIM Cos.( 1024),X(4096),Y(4e96)
160 T=2. *PI/N
170 FOR 14=0 TO t1/4
180 Co_• (H)COS(T*Ns) I QUARTER-COSINE TABLE
190 NEXT Ns
200 MAT X=(0.)
210 MAT Y=(.)
2210 HI=I|T(TI/Delta)
230 112--IIT(T2/Del t a)+1
240 FOP Ils=Vll TO H2
250 T=t1elta*.I$s I ARGUMENT OF ITEGRAHD
260 G=FIIG(T) II.ITEGRAND gqt), REAL HERE
270 IF tsHI-1 THEH PRINT "INTEGRAIID AT LEFT END =";G
280 IF =-=N2 THEN PRINT "INTEGRAIID AT RIGHT ElID -"IG
290 Hn=-ls MODULO -
300 X(Nn)=(Hn)+G I COLLAPSING

310 11 EX T Nl
320 MAT X=X*(Delta)
330 CALL Fftl4(N,Cos(*),X(*),Y(*)) 1 0 SUBSCRIPT FFT
340 GItIT
350 F'LOlIER IS "GRAPHICS"
3?60 GRAPHICS ON
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370 N2=N/2
380 WINDOW -N2,N2,-16,2
390 LINE TYPE 3
400 GRID N/8,2
410 LINE TYPE 1
420 FOR Ns=-N2 TO N2
438 Nn=ts MODULO N
440 Xn=X(Nn)
450 Yn=Y(Nn)
460 T=Xn*Xn+Yn*Yn
470 IF T>o. THEN 500
488 PENUP
490 GOTO 510
500 PLOT Ns,.5*LGT(T) I MAGNITUDE OF TRANSFORM
510 NEXT Ns
520 PENUP
530 PAUSE
540 V2r=V2i=O. I (9)
550 FOR Ns=I-M TO M-I
560 T=M-ARS(Ns)
570 Nn=Ns MODULO N
580 V2r=V2r+T*X(Nn) 1 (9), REAL PART
590 V2i=V2i+T*Y(Nn) 1 (9), IMAG PART
600 NEXT Ns
610 PRINT
620 PRINT "EDGE VALUES USED IN SUM: ";Nn;X(Hn);Y(Nn)
630 PRINT "V2r = ";V2r,"V2r/M^2 a ";V2r/M^2
640 PRINT "V2i = ";V2i,"V2i/M^2 = ";V2i/M^2
650 PAUSE
660 VIr=Vli=O. 1 (5)
670 IF (M MODULO 2)1= THEN 700
680 PRINT "NO GOOD FOR (5) WHEN M IS EVEN"
690 PAUSE
700 Nl=(M-1)/2
710 FOR Ns=-Nl TO N1
720 Nn=Ns MODULO N
730 VIr=Vlr+X(Nn) 1 (5), REAL PART
740 VlI=V1I+Y(Nn) 1 (5), IMRG PART
750 NEXT Ns
760 PRINT
770 PRINT "EDGE VALUES USED IN SUM: ";NnIX(Nn);Y(Nn)
780 PRINT "VIr = ";VIr,"VIr/M = ";VIr/M
790 PRINT "Vii - ";Vli,"Vti/M = ";Vli/M
800 PRINT
810 PAUSE
820 END
830
840 DEF FNG(T) I (29) EXAMPLE
850 Mu=.71
860 Beta=.49061
870 Alpha=.565
880 IF T=O. THEN RETURN I./(Mu*Mu+Deta*Beta)
890 A=Alpha*T
900 S=SIH(A)/A
910 A=T-Mu
920 RETURN S*S/(A*R+Beta*Beta)
930 FNEHD
940
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950~ $UPD Ff't14'DOLIBLE N.REAL Cos<*),X(*),Y(*") ! 14=2-114=163.84; 0 $UPS
1?0c1 IUELE Lc~cg2n,tN 1,42, N3,N4,J,I( ItITEGEPS < 2-:31 =2,147,483,648

970 L) OUBLE 11, 12, 13, 14, 15, 16,1-(, 18, 19, 110, 111, li1-, 113, 114,L(.O: 13,
80 IF N=1 THEN SUBEXIT

990ý IF 11>2 THEH 1070
1000 A=X(o>+x(1>
1010 X,( I)=x()-x( 1)
1020 X(0)=R
1030 A=y".0)+Y(1)
1040 Y( 1)=Y(o)-Y( 1)
1050 Y(O)=A
1060 SUBEXIT
10 f0 A=LOG(N),-LQG(2.)
1080 Loge2n=A
1090 IF ADS(R-Lc'g2n)(1.E-8 THEN 1120
110P10 PRINT "NA ";N; "IS NOT A POWER OF 2; DISALLOWED."
1110 PRUSE
1120 N1=N'.4
1130 t-2=tN1+1
1140 N3=N2+1
1150 t-l41,43+NI
1160 FOR 11=1 TO Log2n
1170 12=2^<Log2n-Il)
1180 13=2*12

1200 FOR 15=1 TO 12
1210)I 16=( IS-I)*14+1
1220 IF 16<=N2 THEN 1260
1230 RI=-Cos(N4-16-1)
1240 A2=-Cos(16-N1-.1)
1250 GOTO 1280
1260 Al=Cos(I6-1)
1270 R2=-Cos(11:3-16-1)
1280 FOR 17=0 TO N-13 STEP 13
1290 18=17+15-1
1.300 19=18+I2
1310 Tl=X(18)
1320 T2=X(19)
1330 T3=Y(18)
1:340 T4=Y<19)
1350 A3=T1-T2
1368 A4=T3-T4
1370 X(18)=TI+T2
1380 Y(18)=T3+T4
1390 X(19)=A1*A3-A2*A4
1400 Y(19)A1l*A4+A2*R:3
1410 N EXT 17
1420 NEXT 15
1430 NEXT 11
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1440 ll=Log2n+l
1450 FOR 12=1 TO 14
1460 L(12-1)=l
1478 IF 12>Log2n THEN 149e
1480 L(12-I)=2( 11-12)
1490 NEXT 12
1500 K=e
1518 FOR 11=1 TO L(13>
1520 FOR 12=11 TO L(12) STEP L(13)
1538 FOR 13=12 TO L(11) STEP L(12)
1540 FOR 14=13 TO L(10) STEP L(11)
1550 FOR 15=14 TO L(9) STEP L(18)
1560 FOR 16=15 TO L(8) STEP L(9)
1570 FOR 17=16 TO L(7) STEP L(8)
1580 FOR 18=17 TO L(6) STEP L(7>
1590 FOR 19=18 TO L(5) STEP L(6)
1600 FOR 110=19 TO L(4) STEP L(5)
1610 FOR 111=110 TO L(3) STEP L(4)
1620 FOR 112=111 TO L(2) STEP L(3)
1630 FOR 113=112 TO L(1) STEP L(2)
1640 FOR 114=113 TO L(O) STEP L(1)
1650 J=114-1
1660 IF K>J THEN 1730
1670 R=X(K)
1680 X(K)=X(J)
1690 X(J)=R
1708 R=Y(K)
1710 Y(K)=Y(J)
1720 Y(J)=R
1730 K=K+I
1748 NEXT 114
1758 NEXT 113
1760 NEXT 112
1770 NEXT III
1780 NEXT 110
1790 NEXT 19
1800 NEXT 18
1818 NEXT 17
1820 NEXT 16
1830 NEXT 15
1840 NEXT 14
1850 NEXT 13
1860 NEXT 12
1870 NEXT II
1880 SUBEND
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APPENDIX B - PROGRAMS FOR (6), (10), AND (13B)

Table B-1. Program for (6)

10 M-7 I > 0
20 Gamma-1.31 I > 0
30 DOUBLE M,Ms I INTEGERS
40 S-0.
50 IF (M MODULO 2)-i THEN 110
60 FOR Ms-i TO M-1 STEP 2
70 S-S+FNG(Gamma*Ms)
80 NEXT Ms
90 Vl-2.*S
100 GOTO 150
110 FOR Ms-2 TO M-1 STEP 2
120 S-S+FNG(Gamma*Ms)
130 NEXT Ms
140 Vl-FNG(0.)+2.*S
150 PRINT M,Gamma,Vl
160 END
170 1
180 DEF FNG(W)

Table B-2. Program for (10)

10 M-6 I > 0
20 Gamma-.71 I > 0
30 DOUBLE M,Ms I INTEGERS
40 G2-2.*Gamma
50 S-0.
60 FOR Ms-i TO M-1
70 S-S+(M-Ms)*FNG(G2*Ms)
80 NEXT Ms
90 V2-M*FNG(0.)+2.*S

100 PRINT M,Gamma,V2
110 END
120 1
130 DEF FNG(W)
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Table B-3. Program for (13B)

10 M-9 > 0
20 Gamma-.79 ! > 0
30 DOUBLE M,Ms,Ks I INTEGERS
40 DIM W(100)
50 REDIM W(1:M)
60 CALL Weights(M,W(*,) I REAL WEIGHTS
70 G2-2.*Gamma
80 S-0.
90 FOR Ms-1 TO M-1

100 Phi-0.
110 FOR Ks-Ms+1 TO M
120 Phi-Phi+W(Ks)*W(Ks-Ms) ! CORRELATION OF WEIGHTS
130 NEXT Ks
140 S-S+Phi*FNGr(G2*Ms)
150 NEXT Ms
160 Phi-O.
170 FOR Ks-i TO M
180 Phi-Phi+W(Ks)*W(Ks)
190 NEXT Ks
200 V4-Phi*FNGr(0.)+2.*S
210 PRINT M,Gamma,V4
220 END
230 1
240 SUB Weights(DOUBLE M,REAL W(*))
250 DOUBLE Ks I INTEGER
260 T-2.*PI/M
270 FOR Ks-1 TO M
280 D-Ks-.5
290 W(Ks)-1. I FLAT WEIGHTS
300 W(Ks)-.5-.5*COS(T*D) ! HANN WEIGHTS
310 W(Ks)-.54-.46*COS(T*D) ! HAMMING WEIGHTS
320 NEXT Ks
330 MAT W-W/SUM(W) I NORMALIZATION
340 SUBEND
350 !
360 DEF FNGr(W)
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ABSTRACT

The performance of several weighted energy detectors of
Gaussian signals in noise are investigated, both by exact
procedures and by five different approximation procedures. In
particular, receiver operating characteristics, for false alarm
probabilities ranging from 1E-10 to .1 and detection
probabilities ranging from .01 to .999, are quantitatively
compared. The standard Gaussian approximation is found to be
severely deficient and generally optimistic for small false alarm
probabilities, while two different fourth-order approximations
have excellent capability over the entire range of probabilities
considered.

A method of avoiding the calculation of the eigenvalues of a
covariance matrix, and yet accurately predicting performance of a
fading medium, is presented. It requires only sums of products
of the covariance elements directly, the precise number depending
on the order of the approximation.
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OPERATING CHARACTERISTICS FOR WEIGHTED

ENERGY DETECTOR WITH GAUSSIAN SIGNALS

INTRODUCTION

The operating characteristics of an equi-weighted energy

detector for Gaussian signals in noise, in terms of false alarm

and detection probabilities, can be characterized mathematically

by a partial exponential expansion, and have previously been

numerically evaluated for arbitrary numbers of samples and

signal-to-noise ratios [1; (7) - (8) and figures 2 - 61.

However, when the weights employed in the energy detector are

unequal, or if the signal and noise powers on each sample are

unequal, these results do not apply and can be misleading,

especially when the number of samples summed is not large. What

is needed, in this case of arbitrary numbers of samples and

unequal weights or powers, is an exact approach in terms of the

characteristic function of the decision variable; this latter

function is frequently available in closed form and can be

employed in the fast efficient procedure presented in 121 and

utilized in [3,4,5] for direct accurate evaluation of the

exceedance distribution function.

At the same time, it would be very useful to have accurate

approximations for the receiver operating characteristics, which

apply over the full range of applicable false alarm and detection

probabilities, yet are easily computed in terms of readily

available functions, or circumvent some of the more difficult
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numerical procedures required in the exact approach. Here, we

will consider four such approximations, namely Gaussian, chi-

square, constant plus chi-square, and generalized noncentral

chi-square, and demonstrate the range of applicability of each.

Thus, our goals here are two-fold

(1) determination of exact operating characteristics of

arbitrary weighted energy detectors along with working programs,

thereby allowing for investigation of other similar cases of

interest to the user; and

(2) construction of accurate simple approximations to the

operating characteristics, which can be extended to related

difficult problems and/or circumvent complicated numerical

procedures.

As a by-product, the inadequacy of some extant approximations

will be delineated quantitatively; in particular, the generally

optimistic results predicted by the Gaussian approximation will

be shown to prevail even when the number of independent samples

involved in the energy detector is very large.

2
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CHARACTERISTIC FUNCTION

We presume that we have M channels (or samples) containing

either noise-alone or signal-plus-noise, and that the random

variables in each channel are statistically independent of each

other. Specifically, for our interest, the output envelopes,

(em ) for 1 < m < M, of M disjoint narrowband filters are

subjected to weighted square-law summation for purposes of

threshold comparison and a statement about signal presence or

absence on that particular observation of M outputs. The

decision variable in this case is

M M
x ZWm em 11 m(1)

mll m~l

where weights (wm ) are all positive but otherwise arbitrary, and
the M squared-envelope outputs z m] are statistically independent

and identically distributed. An example is afforded by a finite-

time exponential summer where wm = A rm- , r < 1, 1 < m < M.

Without loss of generality, the sum of the weights is set

equal to unity,

M
wm tht is, A = -r(2)

1--r
m-1

Then, the mean of random variable x in (1) is equal to the mean

of each random variable zm, because all the (Zm ) are identically

distributed. (If there are scaling differences in the variables

{zm J, these factors can be absorbed in modified scalings (wi M,

3
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without loss of generality.) Under these assumptions, it should

be observed that the performance of the weighted energy detector

in (1) is independent of the ordering of the weights; thus, the

weights can be arranged in any order without affecting the

detection capability. Also, the absolute level of the {wm}

cannot affect the operating characteristics of detector (1).

STATISTICS OF z

For Gaussian signals and noises present at the inputs to the

M narrowband filters in (1), the probability density function of

each filter output envelope-squared random variable zm is

p(u) 1exp( au for u > 0 (3)
z a a)

where parameter

( 1 for noise-alone
1 + R for signal-plus-noise

Here, we have normalized according to the noise power; that is,

the mean of random variable zm is set equal to 1 for noise-alone.

This presumption is equivalent to having knowledge of the average

noise level in the absence of signal and can be accomplished in

practice by monitoring the filter outputs over a sufficiently

long past interval of time. Also, R is the signal-to-noise power

ratio per sample at the output of each filter.

The characteristic function of each random variable z in (1)m

is given by expectation (ensemble average)

4
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f( - Elexp(i~z)} - du exp(iEu) pz(u) = 1 - ira (5)

where we used (3). The cumulants {X z(k)} of zm are immediately

available from (5) as

1 kSX(k) = a for k > 1. (6)(k-i)! z

Actually, these are scaled cumulants, by the factor l/(k-l)!;

they are more convenient and will be employed henceforth.

CHARACTERISTIC FUNCTION OF OUTPUT x

The characteristic function of summation random variable x in

(1) is given by expectation

f( - E(exp(i~x)) V f fz(Wm( ) = [TT(i - i&Wma) (7)

where we used the independence of the [Zm) and relation (5). The

(scaled) cumulants of x are available from (7) according to

M

(i x(k) M ak .wk a a Wk for k > 1 . (8)(k-l),•x m Wk

in-i

In particular, the mean and variance of x are, upon use of (2),

2 2
#x - XX(1) - a W= a, x =XX(2) = a W2 (9)

The desired closed form for the characteristic function of x is

given by (7), where the signal-to-noise ratio parameter a is

given by (4). Result (7) applies for arbitrary M, weights {wm},

and per-sample signal-to-noise ratio R.

5
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SOME RELATED RESULTS

Characteristic functions of the form of (7) occur in numerous

problems. For example, the stability of a spectral estimation

technique employing overlapped FFT processing of windowed data

encountered this form (6; (35) and (15)), where weights {Wmn) were

proportional to the eigenvalues IXm) of a normalized covariance

function. Another example is furnished by diversity combination

in a channel subject to partially-correlated signal fading; see

[7; (D-14)], [8; (24)), and [9]. In particular, the exact

characteristic function in [71 and [8] took the form

(FT - i&(02 + 2X}]- (10)
M-1D

where X m} are the eigenvalues of a covariance matrix. Parameter

D was the order of diversity in [71, but was equal to 1 in (8).

GAUSSIAN APPROXIMATION TO EXCEEDANCE DISTRIBUTION

For the general characteristic function given by (7) and (4),

a Gaussian approximation to the probability density and

exceedance distribution functions is given in appendix A. It is

derived for arbitrary M, weights (w m, and signal-to-noise ratio

R. However, its applicability to numerical evaluation of

receiver operating characteristics, in the form of detection

versus false alarm probabilities, will be shown to be rather

limited in the next section.

6
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EXCEEDANCE DISTRIBUTION FOR ALL WEIGHTS EQUAL

In this section, the weights (Wmn) in (1) and (2) are equal:

w - 1 for 1 <m<M (11)

The characteristic function in (7) then becomes

fx() - (1 - i&a/M)-M (12)

This corresponds to a multiple of a chi-squared random variate

with 2M degrees of freedom. The corresponding probability

density function is

(u) u M- exp(-uM/a) for u > 0 , (13)PX (M-1) (a/M)M

while the exceedance distribution function is, for u > 0,

Qx(u) - dt px(t) - exp(-uM/a) eMl(uM/a) a EM_1(uM/a) (14)

u

Here, en (x) is the partial exponential function [10; (6.5.11)),

n k

en (x) - x (15)

k-0

and we have defined auxiliary function

En (x) - exp(-x) en (x) for x > 0 . (16)

If threshold value T is used for comparison with output x of

the energy detector (1), then the false alarm probability PF is

7
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PF = Qx(T; a-i) - EMl(TM) (17)

Similarly, the detection probability PD is, from (14) and (4),

P = Q (T; a-l+R) - EM ( T (18)

when T is eliminated between (17) and (18), the operating

characteristics (PD versus PF) can be plotted, with signal-to-

noise ratio R as a parameter. Separate plots are required for

different values of M, the number of envelope-squared samples.

GRAPHICAL RESULTS

The receiver operating characteristics (ROC) for

M - 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 (19)

are plotted in figures 1 through 1, on normal probability paper,

for false alarm probabilities ranging from 1E-10 to .1 and for

detection probabilities ranging from .01 to .999. Signal-to-

noise ratios (in decibels) have been chosen, typically, to cover

PF'PD possibilities from low-quality pair .01,.5 to high-quality

pairs in the neighborhood of 1E-10,.99.

Superposed in figure 3 (in dashed lines) is the Gaussian

approximation, for M - 4, to the exact exceedance distribution

function Qx in (14); see appendix A. Three selected values of

signal-to-noise ratio R are indicated, namely R - 4, 8, and 12

dB. They are identified by a black dot where they cross the

exact operating characteristic for the same signal-to-noise

8
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ratio. It is seen that the Gaussian approximation is virtually

useless at this low value of M, the number of samples.

This superposition, of three representative curves afforded

by the Gaussian approximation, is continued up through M - 1024

in figure 11. Again, agreement with the exact results is

generally quite poor. Even at M - 1024, the required signal-to-

noise ratio from the Gaussian approximation for P F = 1E-10,

PD- .3, for example, is in error by .3 dB.

Furthermore, it should be observed that the Gaussian

approximation is always optimistic in the useful range of the

operating characteristics; this bias is misleading in

quantitative performance predictions applied to practical

detection systems. Additionally, the case in this section,

namely equal weights, is the most favorable situation for the

Gaussian approximation to apply in; any other distribution of

weight values makes the effective number of weights (Me in (A-6)

and sequel) less than M, thereby deviating even further from an

accurate application of the central limit theorem. The message

to be conveyed here is that the performance capability of energy

detectors for Gaussian signals and noises should be based on

something other than the Gaussian approximation.

9
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EXCEEDANCE DISTRIBUTION FOR ALL WEIGHTS DIFFERENT

In this section, we confine attention to the case where all

the weights fw m ) are different from each other; that is,

wm 0 wk if m * k ; wm > 0 . (20)

Then, we expand the characteristic function of x in (7) in a

partial fraction expansion according to

x ( wm(21)
m=l m-1

where coefficients

M-1w
Bm for i < m < M (22)"m17(wm _ Wk)

k-i
k~m

depend only on weights {Wm} and not on signal-to-noise ratio R.

The probability density function of x is then immediately

available from (21) as

M

Px (u) - Am Bm exp(-Amu) for u > 0 , (23)

m-i

where Am - i/(Wma). The corresponding exceedance distribution is

' M M '
ex(u) - J dt px(t) - B m exp(-Amu) for u > 0 (24)

u m=l
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If threshold T is used as the basis of comparison for output

x of the weighted energy detector in (1), the false alarm and

detection probabilities follow from (24), respectively, as

PF QX (T; a 1 1) , PD Q x(T; a - 1 + R) (25)

As an example, if M - i, then w -1 , A1  1 I/a, B1 = 1, and

(24) yields Qx (U) - exp(-u/a) for u > 0. Then, (25) gives

1 i

PF exp(-T) , - exp('R) - PF - ln exp (lfPF (26)

For this special case of M - 1, threshold T can be eliminated and

PD expressed explicitly in terms of PF and R.

GRAPHICAL RESULTS

The particular case of unequal weights that we shall

concentrate on here is a set of exponential weights

rn-i
wm - A r for 1 < m < M , r < 1 , (27)

where scale factor A is selected for normalization of the

weights, according to (2). Of course, 'he absolute level of the

weights does not affect the operating characteristics.

In figure 12, the ROC for M - 4 and r - .99 is plotted, as

determined from (25) and (24). Since r is close to 1 for this

example, the weights (27) are all nearly equal, causing some of

the coefficients {BmI in (22) to be rather large, in the range of

±.5E6. This leads to round-off error in sum (24) for the
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exceedance distribution function and the possibility of useless

numerical results; however, because M = 4 is a small number, the

round-off error does not yet show up in figure 12.

When M is increased to 8 in figure 13 and r is kept at .99,

coefficients fBm) in (22) reach values in the range of +.7E12,

and round-off error begins to show up as wiggly lines in the

higher detection probability values near .999. We are using a

computer with 64 bits per word, which yields approximately 15

decimals of accuracy for the mantissa. Although coefficients

(Bm} can be calculated very accurately from (22), they alternate

in sign and can be very large. Then Qx in (24) requires

differencing of large numbers, with an attendant possibly

damaging loss of accuracy, especially tor small PF"

When M is increased by one, to 9 in figure 14, and r is

maintained at .99, round-off error is now significant at the

upper edge of the ROC, although useful characteristics are still

available for lower values of PD" The reason for this problem is

that all the weights are close to each other; in fact, the M-th
M-1

weight is r - .923 times as large as the first weight. The

largest coefficient values for (BmI are in the range of ±.16E14.

When the weights are spread out over a wider range, larger

values of M can be tolerated in sum (24), without encountering

significant round-off error. For example, a set of M = 16

uniformly distributed random weights, over the (0,1) interval,

were utilized in figure 15 without any problems. But when M was

increased to 20 in figure 16, again for uniformly distributed
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weights, the upper edge of the ROC, for PD > .99, was useless.

Nevertheless, a significant portion of the ROC for lower PD

values is still acceptable.

The lesson to be drawn from these results is that the partial

fraction expansion, leading to the exceedance distribution

function in (24), has utility for spread out weights (wm) and

moderately low values of M, the number of envelope-squared

samples. However, it will not be a viable tool for large values

of M, nor for general weight structures which may have some close

or equal values. The more general approach presented in f2], in

terms of an arbitrary characteristic function, has no such

limitations, on the other hand, although the numerical

calculations required are more extensive.
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CHI-SQUARED APPROXIMATION FOR ARBITRARY WEIGHTS

The difficulty of evaluating the ROC from exact character-

istic functions of the form of (7) and (10) has prompted the use

of approximations that attempt to extract an effective number of

independent samples from a general weight structure, and use this

parameter in a simpler chi-squared fit. For example, in

[6; (38) and sequel], such an approximation was fruitfully

employed to study the stability of a spectral analysis technique

employing equi-weighted overlapped segments. Also, in

[9; (A-24) - (A-28)), a chi-squared approximation was adopted for

the analysis of a diversity combiner in a partially-correlated

fading channel. However, in this latter case, no quantitative

measure of the error in the approximation was given.

PARAMETERS OF APPROXIMATION

Here, we will address the adequacy of the chi-squared

approximation for a general exponential weight structure of the

form of (27). We begin by generalizing the chi-squared

characteristic function in (12) to the candidate form

-M
f (e) M (1 - iw ea) e, (28)

where we is an effective weight and Me is an effective number of

envelope-squared samples, which may be noninteger. (The number

of degrees of freedom in (28) is 2M e.) The corresponding

probability density and exceedance distribution functions are
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u exp w ua
Pe(U) = e for u > 0

F(M e) (w ea) e

e e

e (U) = r ( e, &wa)/r(Me) for u > 0 , (29)
e

respectively, where r(-,.) is the incomplete gamma function

[10; 6.5.3J. These results generalize (13) and (14). The

(scaled) cumulants of this gamma distribution follow from (28) as

1 Xe(k) M (w a) k for k > 1 (30)
(k-lfl Xe e e

The mean and variance of this approximation are therefore

2 2M e we a and Me we a , respectively.

When we equate these first two moments of the generalized

chi-squared approximation (28) to the first two moments of

decision variable x in (9) and (8), we find

2 wm
w2 wI2 -

w - M - I__ .MI (31)
e W e W M1 2 Z~ 2wm

m=l

For example, if all the weights are equal, then Me = M. On the

other hand, if all the weights are zero except for one, then

Me = 1. Both of these limiting cases obviously agree with

physical intuition. Observe that we and Me are independent of

parameter a or R, the signal-to-noise ratio.

For the exponential weight structure in (27), the effective

number of weights and the effective weight are
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1 + r 1 w 1 for W (32)
e 1- r I ' We - M 11 +r e

It should be noted that as M - •, effective number Me saturates

at value (I + r)/(l - r), which is not infinite.

Since the incomplete gamma function in (29) is tedious to

compute for Me noninteger, performance could be bracketed by the

two cases Mi., Mi+1, where Mi is the integer part of M e. Or

interpolation could be used between these two cases. Instead, we

shall choose examples for which Me is an integer; this allows us

to use a form like (14), which is easily computed upon

replacement of M by Me'

GRAPHICAL RESULTS

The first example of the use of a chi-squared approximation,

for the exponential weight structure in (27), is furnished by

figure 17 for M - 5, r = .69388907; this particular r value is

chosen to yield Me - 4, as may be verified from (32). The exact

results (solid lines) in this figure were obtained by the method

of the previous section, namely, all weights different. The

three dashed curves are yielded by the chi-squared approximation

of this section, with Me = 4; the latter are seen to be

optimistic by almost 1 dB along the left edge of the figure.

When M is increased to 25 and r decreased to .60000182, again

resulting in Me N 4, figure 18 shows that the chi-squared

approximation is far worse. The reason for this behavior is that
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25 significantly different weights cannot be well represented by

4 equal weights in terms of evaluating the detection capability

of the energy detector (1).

The series of plots in figures 19, 20, 21, 22, 23 correspond,

respectively, to Me - 8, 16, 32, 64, 128, for various

combinations of M and r, as indicated on the figures. Again, the

chi-squared approximation is generally optimistic in the useful

range of performance. For M = 64 in figure 20, the discrepancy

is almost 1 dB along the left edge. However, for large M, like

200 in figure 23, the difference is only about .25 dB along the

left edge.

The results in figures 21, 22, 23 for Me = 32, 64, 128,

respectively, were not obtainable from the all-weights-different

method of the previous section, due to excessively large

coefficients (Bimn in (22). Instead, it was necessary to resort

to the numerical integration procedure given in (21; the values

of increment 6 and length L& appropriate to each case are

indicated on each figure.

A conclusion to be drawn from the results in this section is

that, although the chi-squared approximation is much better than

the Gaussian approximation, it is still not adequate for accurate

performance predictions within a few tenths of a decibel. The

chi-squared approximation is generally unacceptable for small Me,

unless r is very close to 1. And for large Me, it is acceptable

in some regions of the ROC, but not in others, especially if the

extreme weight ratio, r 1 , is very small.

34



T1R 8753

.4-)
U)

Vr

~0

.05

.02

E-IOE-3 E-9 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

Probability of False Alarm

Figure 1?. ROC for M=5, r=.69388g07 (Me=4)

35



TR 8753

.385

4.0

U
4)

4 .8

.5)

C. .3

.2

. 05

. 02

E-IOE-9 E-9 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

Probability of False Riarm

Figure 18. ROC for M=25, r=.60000182 (Me=4)

36



TR 8753

.33

.98

0

4- .

0

.4,

a- .5

~~0

.0211W /

E-IOE-3 E-8 E-7 E-6 E-5 C-4 E-3 .01.02 .05 .1

Probability of False Riarm

Figure 1g. ROC for M=10, r=.83623826 (M,.8)

37



TR 8753

.99 7

.98

.95 1

0

.5,

.4) .8 F

0- .

-Q .2

.02

0 1

E-IOE-9 E-8 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

ProbabilIity of False AlIar m

Figure 20. ROC for M=64, r=.88242683 (M,=16)

38



TR 8753

.339

.33

.35

'4-) .
C3

4- .7

0

.4
0
L-

0-. .3

.05

.02

E-IOE-3 E-9 E-7 E-6 (-5 E-4 E-3 .01.0? .05 .1

Probability of' False Alarm

Figure 21. ROC -for M=f50, r=.94648071 (M,=32)

39



TR 8753

.95 z0

c .

.0

.02

.08

04



TIR 8753

.999

.998

C .99 rV Y

4-)

0

.2

.05

.02

E-IOE-S E-8 E-7 C2-6 C-5 E-4 E-3 .01.02 .05 .1

Probability of False Alarm
Figure 23. ROC Tor M=200, r=.98634790 (Mel128)

41/42
Reverse Blank



TR 8753

THIRD-ORDER APPROXIMATION FOR ARBITRARY WEIGHTS

When a constant c is added to a random variable, the

characteristic function is modified by multiplication by the

factor exp(ic&). Accordingly, a further generalization , the

chi-squared characteristic function in (28) is afforded by

exp( ib bca) 1

f,(&) x p a = exp i.bca - Mc ln(l - idwca) (33)

(1 - iEw ca) c

This form now has three parameters to choose, namely w , bc, and

effective number of samples Mc. This is in distinction to the

chi-squared approximation (28) and the Gaussian approximation

(A-2), both of which had only two free parameters to adjust.

Thus, whereas we only matched the first two moments in (30) and

(A-3), respectively, to those of decision variable x, we can now

match the first three moments of x if we use characteristic

function model (33).

The cumulants of characteristic function (33) are

Xc(l) = Mc wc a + bc a,

1 k(k-l)! Xc (k) = Mc (Wc a) for k > 2 (34)

When the first three cumulants (or moments) of (34) are equated

with the corresponding quantities of decision variable x, as

given by (8), the unique solutions for the parameters of (33) are

3 W3 2w2 3w2
Mc --• ,2 wc = W2 bc = WI W3 (35)

w3
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where

M

Wk = wk (36)
m=l

It should be noted that the parameters in (35) are independent of

parameter a or R, the signal-to-noise ratio.

The probability density function corresponding to

characteristic function (33) is

M -i1 [ u + b a1(u -bca) c 1 exp .... Wea

p_(u) = uM - for u > bca (37)

and zero otherwise. The exceedance (gamma) distribution function

is an obvious generalization of (29), or (14) if Mc is integer;

see [10; 6.5.3, 6.5.2, 6.5.13].

QclU) = r IM u w c a ( = EMc- c a I for u > bca (38)

For threshold value T, the false alarm and detection

probabilities follow immediately as

P P EM - c a (39)PF M -lt wJ EM '
c( - bC T-bca

provided that T > b a.
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EXPONENTIAL WEIGHTS

We now restrict attention to the exponential weight structure

1- r m-i M
Wm - I t r for 1 < m < M with t r, (40)

where we have normalized at W1 = 1. Then, from (36),

(IW )kk 1 t k 1 r)k- I 1 + t t 2 + k+ tk-1

k- 1 - r 1 + r + r + . + rk-

In particular,

W = , W 1 r + t W )- 1 + t + t (42)
1 2 1- t 1 + r ' 3 1- 1 + r + r2

The parameters in (35) then follow by substitution as

M = - r3) 2 (1 - t2 )3 1-t (1 [i+r+r 2 2 (4
c (1 r 2) 3 (l t) 2 lIr 1 L)i1+ t +t 2

w -= r 1 + t + t 2  b (1 - r t) (r - t) (44)
1i t 2 1 + r + r2'( + r)2 (i + t + t 2 )

For equal weights, wm = l/M, we get the usual reduction to

W= 1, W2 - l/M, W3 - /MN2 , giving Mc M M, wc - l/M, bc - 0.

Furthermore, it is shown in appendix B that additive constant b

in (33) and (37), as determined from (35) and (36), is never

negative, for any nonnegative weight structure (w }.
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GRAPHICAL RESULTS

The first example we consider here is M = 25, r = .75049209,

for which (43) gives Mc = 4; again, the reason for the particular

choice of r is made so that Mc is integer and (39) can be used.

The approximation afforded by (39) is superposed (dashed lines)

in figure 24 on the exact results (solid lines) obtained from

(25). Increasing M to 64 and changing r to .75049170, so that Mc

is maintained at 4, generates virtually the same approximation.

The fit is poor and rather optimistic at the left edge of the

figure, due to the small value of Mco namely 4.

For M = 50 and r = .96915298, M is increased to 32 and theC

results are compared in figure 25. Now, the fit afforded by the

constant plus chi-squared approximation is rather good over the

entire range of false alarm and detection probabilities shown; in

fact, the approximation is optimistic by about .1 dB on the left

edge of the figure. The reason for this development is the

larger value of the effective number of samples, Mc, namely 32.

Two more results, for Mc equal to 64 and 128, yield similar

conclusions in figures 26 and 27, respectively. Again, the

exponential weight structure was employed. However, the goodness

of fit of the constant plus chi-squared approximation is not

limited to this type of ueights, but in fact applies to arbitrary

structures. To back up this statement, an example of uniformly

distributed random weights for M = 133 and Mc = 77.971 is

displayed in figure 28; the overlay, which used Mc = 78 in

approximation (39), is seen to be very good for this value of Mc.
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APPLICATION TO EIGENVALUE PROBLEM

Earlier, in (10) and (8; (24)), a particular characteristic

function was given which has occurred in a number of statistical

analyses. That characteristic function, in normalized form, is

fL=i - i + R Xm (45)

where R is the per-sample signal-to-noise ratio and {XM} are the

eigenvalues of the normalized covariance matrix P of the fading

signal components. By expanding the ln of (45) in a power

series in i&, the cumulants of random variable x are found to be

M M k

(k-I)! Xx(k) = (1 + R Xm)k Rn mn
m-i m-i n-0

k

-M + Z(•) Rn tr(Pn) for k > 1, (46)

n-I

where we have used the simplifying result in appendix C regarding

sums of powers of eigenvalues. In particular, there follows

from (46), the first three cumulants of x in terms of tr(Pn):

Xx (1) - M + R tr(P)

Xx(2) - M + 2R tr(P) + R2 tr(P 2

IXx( 3 ) - M + 3R tr(P) + 3R2 tr(P2) + R3 tr(P 3) (47)
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PARAMETERS FOR CANDIDATE APPROXIMATION

In this section, we will approximate exact characteristic

function (45) by the form employing the constant plus chi-squared

idea again, namely

exp(i~b d) "
fed(x(1Ed) Rd exp(i~bd -Md ln(l - i ~wd (48)

(1 - iE~wd) d- .w)

The cumulants are given by a form very similar to (34), and in

particular, the first three (scaled) cumulants of characteristic

function (48) are

2 1 3 ( 9
Xd(l) - M d Wd + bd , Xd( 2 ) - md w d , Xd( 3 ) - Md Wd . 49)

If the first three cumulants, Xd(k) for k-1,2,3, were specified,

we could then solve (49) for the required parameters according to

X_ 3 _(2) Xd( 3 )/ 2  X2(2)
M = wd d bd Xd(1) - d(50)
d (xd(3)/2)2 - Xd(2) d Xd(3)/2

Now, we set the cumulants of approximation (48) equal to the

exact cumulants given by (47), and then solve (50) for the

required parameter values. Then, approximation (48) to exact

characteristic function (45) is available for numerical

evaluation. If cumulants (Xx (k)} for k-1,2,3 can be evaluated

either analytically (via eigenvalues (Xm) in (46) or by the trace

relations in (47)) or numerically (estimated via finite time

averages), then the parameters in (50) can be determined and the

corresponding ROC found.
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EXACT PERFORMANCE OF (45)

If signal-to-noise ratio R - 0 in (45), then

f X() - (1 - i&)-M and there follows, in a manner similar to

(14), Qx (u) - EM _(u) and -F = EM-l(T) for threshold T.

If R > 0 and all the eigenvalues {X m in (45) are distinct,

then, in a manner similar to (21), we can express

N. Bm(R)

fx(& )M Bm (R ) (51)

M-1 - i(l + R m

where coefficients

B (R) - ( + for 1 < m < M (52)

m M

1 M-FI(m - Xk)
k-l
ksm

The exceedance distribution function is then

M

(U) - B (R) exp i R for u > 0, R > 0 (,53
M=l m

and the detection probability is

M

P ZBm(R) exp( 1  T for T > 0, R > 0 .54)

in-i

The eigenvalues (X m of normalized covariance matrix P are

independent of signal-to-noise ratio R; however, coefficients

{Bm(R)) are dependent on R and explicitly indicated so.
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GRAPHICAL RESULTS

The only example that we consider here is a covariance matrix
P = pmn 1, where mn= Im-n In particular, for M - 10 and

p = .5, the M eigenvalues (X{m of P were evaluated and the

results on page 55 were used for an exact evaluation of the

detection and false alarm probabilities; these are displayed as

solid lines in figure 29.

Then, we returned to matrix P, ignored the knowledge of the

eigenvalues, and instead employed the trace relations in (47) and

appendix C to evaluate the cumulants of random variable x. These

were substituted in (50) to determine the parameters of

characteristic function (48), as explained in the sequel to (50).

Then, the method of (2] was used to obtain the corresponding ROC.

These results are overlaid as dashed lines in figure 29, for

three selected values of signal-to-noise ratio R (in decibels).

The agreement for small signal-to-noise ratios is very good, and

can be explained by observing that (45) approaches the chi-

squared characteristic function in this case. Approximation (48)

is also excellent for very small false alarm probabilities,

despite the fact that the equivalent number of samples, M d, is

rather small; for example, the three curves in figure 29 for

R = 2,5,8 dB have Md - 5.79, 4.83, 4.31, respectively.

Another example for M = 32, p = .5 is displayed in figure 30.

Here, the values of M for the four overlays, R = -2,0,2,4 dB ared

24.1, 20.6, 17.6, 15.4, respectively. These larger values of Md

account for the improved fit to the exact results.
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FOURTH-ORDER APPROXIMATIONS FOR ARbITRARY WEIGHTS

In this section, we will consider a couple of fourth-order

fits to a specified characteristic function and will match

cumulants (or moments) through fourth-order.

GAUSSIAN PLUS CHI-SQUARED FIT

The initial fourth-order fit of interest here corresponds to

the characteristic function of a (nonzero mean) Gaussian random

variable plus a chi-squared variate. That is, the candidate is

exp ibf 2i 12

f (U)f = 2  d = Pixp Uf- cf1 - Mf ln(l - i~wf)J

1 - Wf(55)

The first four cumulants of characteristic function (55) are

2
Xf(1) = bf + Mf wf , Xf( 2 ) = cf + Mf wf

1 3 1 4
xf(3) = M w 3 Xf(4) = M wf (56)Xf(3  f ~f 6f f f (56

If the cumulants are specified, the parameters for

characteristic function (55) can be determined explicitly as

(Xf(3)/2) 4  Xf( 4 )/ 6

Xf(4)/6J 3 P Xf( 3 )/ 2

b( () Xf(3)/2) 3  
_ 2) X (x3)/2)2  (7bf = f~ - (f4)/6J2  c 'f Xf( Xf(4)/6

Numerical results will be presented in a later section.
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NON-CENTRAL CHI-SQUARED FIT

The other fourth-order fit that we consider corresponds to a

generalized non-central chi-squared variate, namely

characteristic function

f (&) expI iVCg M ln(l -i ) (58)

g (1 -~ 9)Wg Mg 9 1 - i~cg g g

This is called generalized because we do not force cg W Wg.

The in of (58) can be expanded in a power series in i&:

in fg () - ibg (i•cg)j + Mg 7 (i•Wg) k (59)

j-0 k=l

The first four cumulants of this characteristic function are then

2
Xg (1) - bg + Mg wg X 9g(2) - 2 b cg g g g

12 3 1I4 3 4YXg (3) - 3 bg c + Mg W Xg(4) - 4 bg c + Mg w4 (60)

The inversion of these nonlinear equations, for the parameters in

terms of the cumulants, is not possible in closed form, as it was

for candidate characteristic function (55). This limitation

tends to discourage use of the non-central chi-squared

approximation (58). However, in appendix D, an efficient

numerical procedure for solving (60) for the required parameters

is developed and progcammed. Application of this approximation

procedure is deferred to a later section.
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PERFORMANCE IN STEADY STATE NOISE

Up to this point, the number of samples, M, has been finite,

both for signal-present as well as signal-absent; then, the noise

output of the exponential integrator, (27) or (40), has not

reached steady-state. In this section, the number M of noise

samples will be set equal to -, thereby allowing the integrator

noise output to reach steady state. However, the number, N, of

samples containing signal (if present) will remain finite.

This situation arises in practice, for example, when the

precise arrival time of the signal is unknown. The use of

surplus envelope-squared samples [zm ., for m > N, does not

improve performance, since these particular samples are always

noise-only; in fact, these extra samples always degrade

performance, the exact amount depending on the relative sizes of

weights Jw m} for m > N compared to m < N. Here, we will give a

method for quantitatively assessing the impact of these surplus

noise-only samples on the operating characteristics.
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CHARACTERISTIC 
FUNCTION

The characteristic function of the decision variable is an

obvious generalization of (7) to the form

C-i

fx& T1 - iE~w Mam)]) (61)

where the signal-to-noise ratio parameter am now takes the form

a I for noise-alone f

am 1 + R for signal-plus-noise for 1 < m < M = (62)

The particular case that will be considered at length, here, is

that of a finite-duration constant-strength signal, which is

accommodated mathematically by setting

(R for 1l<m<N

Rm for (63)
0 for N < m <N M

When signal-to-noise ratio R is equal to zero, that is,

signal-absent, the characteristic function in (61) reduces to

-i

f (i - wm (64)

Unfortunately, even for the exponential averager,

w = (l-r) r -I1 for 1 < m < M = , (65)

the noise-only characteristic function in (64) takes a form,
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CO1

?x F= - i& (l-r) rm-' (66)

which is not expressible in closed form; see ill; (89.18.3)).

(Likewise, the finite product cannot be simplified; see

[11; (89.18.2)).) This necessitates termination of the infinite

product in (66), being sure to keep the remainder below an

acceptable tolerance; this issue is addressed in appendix E.

CUMULANTS

For general characteristic function (61), the cumulants are

(k-i)! Xx(k) = (w am)k for I < k . (67)
m=l1

For the special case of the exponential averager (65) and the

finite-duration signal (63), these cumulants reduce to

(kl) Xx) M r)k (1 + R) k i - r k)+ r kN (68)11 -

(k-l)! X~() ( r)( k +

At the same time, characteristic function (61) becomes

rn-I
I } i& (1-0) m-1l(1 + R) I i& (1-0) rm-I1

m=N+l

(69)
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In particular, for noise-alone, then R = 0 and (68) reduces

to

1 (k) (1 - r) (1 - r)k-l
(k-l)! x 1k- 1 k k-l (70)

The three lowest-order cases are

Xx(1) = I x(2) - r 1- (13- 2x' x 1 + r ' •Xx(3) =1 + r + r 2  (71)

For signal-present, R > 0, the three lowest cumulants are,

from (68),

N
XX (1) =1 + R -R r N,0

(2) 1- rr(1 + R)2(1 - r 2 N) + r 2 N]

Ifx (3) (1 - r) 22 [(' + R)'(1 - r 3N) + r 3N] (72)
1+ r + r

Here, N is the number of signal components, R is the signal-to-

noise ratio per sample, and r is the exponential decay factor for

the weight structure (65).

In the evaluation of the signal-present characteristic

function (69), the second product will have to be terminated at a

finite limit m - L (> N). The error due to this truncation is

addressed in appendix E.
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GRAPHICAL RESULTS

An example of the results in this section for M = ®, N = 32,

r = .9, is displayed in figure 31, as obtained via exact results

(66) and (69), along with the truncation procedure of appendix E.

Superposed as dashed lines are the results of using the constant

plus chi-squared approximation (48), where the parameters are

obtained from the cumulants, according to (50). The cumulants

themselves are given by (72). The effective number of samples,

Md in (48), takes on the values 10.680, 10.676, 10.673, and

10.672 for the four signal-to-noise ratios of 0, 2, 4, and 6 dB

indicated in the figure. This relatively small value of Md is

the reason for the discrepancy in figure 31 between the exact and

approximate results.

Figure 32 is drawn for M = =, N 50, and r = .96915298;

compare figure 25, for which Mc 32. The values of Md for the

three overlaid curves for signal-to-noise ratios equal to -2, 0,

and 2 dB are 33.531, 33.030, and 32.624, respectively. These

larger values, for the effective number of samples, lead to

better agreement in this figure; in fact, the approximation is in

error by only .15 dB along the left edge of the figure.
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BLOCK EXPONENTIAL WEIGHTING

In this section, we again consider a weighted energy detector

in steady state, that is, M = •. However, the averager now

operates on blocks of data points which are equally weighted, but

which are themselves exponentially weighted. That is, the

decision variable x is now given by

x = Zwm zm (73)

m=1

where the weights (w m are

11 for 1 < m < B"

w B r for B < m < 2BWm - ' 2 (4
r for 2B < m < 3B

Here, B is the block size and the weights have been normalized

at W1 = 1. The following diagram illustrates the block

exponential weighting structure.

B 1
l-r m

r

2
r

1 m
-- B -
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SIGNAL STATISTICS

The signal, if present, occupies the first N samples of sum

(73), where

jEmN 
(75)B

is presumed integer; that is, J is the number of blocks occupied

by signal (when present). The signal-to-noise ratio parameter is

Sifor noise-only

a m 1=o oieol for I < m < N ,(76A)
a+R for signal plus noisej

and

am = 1 for N < m < - (76B)

CHARACTERISTIC FUNCTION

The characteristic function of x in (73) for signal present

is, using the independence of the (zm},

-i

f x M 1 ( - i &w MaM)1

J-1-B

= i- i Bri (I + R) I •lrg (77

J=j=J

Again, an infinite product is required and the truncation

procedure given in appendix E is directly relevant.
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CUMULANTS

The cumulants of decision variable x follow readily from

(77), upon expansion of in f( ) in a power series in i&:

(k-i)! x(k) = [(k-I)/ (l+R)k(1-rki) + rkJ] for k > 1. (78)" "C l 1 +r+. • +rk-

The four lowest-order cumulants will be used in fitting the exact

characteristic function (77) by approximations (55) and (58).

GRAPHICAL RESULTS

Results for the operating characteristics for B = 4, J = 32,

and r = .95 are presented in figure 33. Thus, from (75), the

signal (when present) occurs on N = 128 samples. Superposed as

dashed lines is the approximation afforded by third-order fit

(33) and (39). The discrepancy is only .i dB along the left edge

of the figure.

Another example of block exponential weighting, for B = 4,

J = 16, and r = .9, is displayed in figure 34. The dashed

overlay is again the third-order approximation (33), which is

optimistic by about .15 dB along the left edge of the figure.

The exact results from figure 34 are repeated in figure 35,

but now the overlays are the two fourth-order approximations (55)

and (58). The latter two approximations are indistinguishable

from each other over the entire range of probabilities displayed.

Furthermore, they differ from the exact results only by .05 dB at

the left edge of the figure.
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SUMMARY

The receiver operating characteristics of a variety of

weighted energy detectors, for Gaussian signals in noise, have

been investigated exactly and compared with five different

approximate procedures. The Gaussian and chi-squared

approximations have been found to be generally inadequate for

very small false alarm probabilities, while the generalized

chi-squared (gamma) and both fourth-order fits have yielded very

good results over the entire range of detection and false alarm

probabilities considered. The only limitation of the latter

approaches is the need to have additional cumulants (or moments),

since the first two cumulants are not always entirely adequate

for accurate performance predictions.

If the exact characteristic function for the decision

variable of a system can be determined, either analytically or

numerically, then the receiver operating characteristics can be

accurately evaluated by the method of [2], as done here.

However, there are occasions where it may be desirable or

imperative to use an approximate characteristic function, as for

example, when only a few low-order moments are known. In this

fashion, we can, for example, avoid the determination of

eigenvalues or avoid the evaluation of infinite products. Also,

the approximate forms will frequently be faster to compute than

the exact results. This report indicates the relative accuracies

inherent in some of the standard approximations and some of their

generalizations, which should be considered for future use.
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APPENDIX A - GAUSSIAN APPROXIMATION

The characteristic function of interest was presented in (7):

fx(•) x E{exp(i.x)) f z) = 1- iW maa (A-i)

m=l m-1

where w m1, for 1 < m < M, are an arbitrary set of weights. The

mean and variance of random variable x were given in (9).

Now, if energy detector output x in (1) were a Gaussian

random variable, its probability density function would be

pg(u) ! ½ exp - - 9 for all u (A-2)
9 (20 g 2a2

where, from (9) and (4), we set

e 1 1w2

2 or . (A-3)

1 + R1 (I + R)2 W2

The exceedance distribution function corresponding to (A-2) is

Q9(u) f dt pg9(t) = f g u for all u *(A-4)
u [•

where

t

t(t) * dv (2n) exp(-v2 /2) (A-5)

is the normalized Gaussian cumulative distribution function.
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At this point, it is convenient to define an effective number

of samples, Me, for an arbitrary set of weights (wm I as in (31)

[-W m) W2 1

M M= 3 1 1 (A-6)e M 2 W2 W2
m-1 m

Here, we used (8) and (2).

If threshold T is utilized for a comparison with energy

detector output x for a decision on signal presence or absence,

then the approximate false alarm probability follows from (A-4):

PF- Qg (T; R-0)- t 0(M1-T) (A-7)

with the help of (A-3) and (A-6). Similarly, the approximate

detection probability is

PD = Qg(T; R*O) = t M I(( - " (A-8)

Equations (A-7) and (A-8) produce the Gaussian approximation to

the operating characteristics of the energy detector (1),

described by characteristic function (A-l). They depend only on

the single parameter Me defined in (A-6), in addition to the per-

sample signal-to-noise ratio R. That is, M and {wm ) are all

collapsed intc the single parameter, effective number Me*

An immediate obvious problem with (A-8) is that the limit of

detection probability PD' as R 4 -, is not 1; in fact, it is

4(0) < 1. This drawback serves as a warning about the adequacy

of the Gaussian approximation.

78



TR 8753

For the approximations in (A-7) and (A-8), we can explicitly

solve for PD in terms of PF' as follows. Let # be the inverse

function to §; see [10; 26.2.231. Then (A-7) can be solved for

threshold T according to

T 1 M O(P . (A-9)

Substitution of this result into (A-8) yields

.M0 R + O(PF)]) (A-10)

It now follows immediately from (A-10) that, for specified PF

and PD' the required signal-to-noise ratio R is

R= -D F (A-lI)

e

where

F E #(PF) , D s #(P . (A-12)

The result in (A-lI) is a generalization of 11; (C-8) and (11)]

to the case of arbitrary weights (wm}. It is immediately obvious

from the denominator of (A-li) that the desired PD must be

smaller than .(04).
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APPENDIX B - POSITIVITY OF PARAMETER b
c

Here, we will show that the parameter bc in (35) is never

negative, regardless of the weight structure (w m, provided that

wm > 0. The Cauchy-Schwartz inequality states that

am b] < a' L7 b (B-1)
m-1 m=l m=l

for any real quantities (am1 and {bm}. If we let am w Wm3 / 2 and
1/2

bm = wm , then (B-1) yields

(M 12 m4 m
2 < w3 w (B-2)Wm <- . m ý m (B2

I m=l m=l

that is, W2 < W3 W1, where

M

Wk = kw (B-3)
m=1

Therefore

2
b wI W2 > 0 (B-4)

In addition, there follows

2

MI wc = W2 < W (B-5)
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APPENDIX C - TRACE RELATIONS FOR EIGENVALUES

Suppose MxM matrix P - [p mnI has eigenvalues {Xm 1, 1 < m < M.

Let A be the diagonal matrix of eigenvalues {Xm } and let Q be the

normalized modal matrix of eigenvectors of P; see [12; section

1.13]. Then we can express matrix P in the form

P -Q A QT#(C1
P=QA , (C-l)

from which there follows the k-th power

Pk . Q A Qk Q (C-2)

We now use the trace relation

tr(A B C) = tr(B C A) , (C-3)

to evaluate the trace of Pk

M

tr(Pk) - tr(Q Ak QT) - tr(Ak QT Q) = tr(Ak) X Akin (C-4)
m-i

That is, the sum of the k-th powers of eigenvalues JX m) can be

obtained from the trace of matrix Pk, without ever having to

evaluate the eigenvalues at all. In particular,

M M

iX - tr(P) = Pmm (C-5)

m-I m=l

M M

jj2 . tr(P 2 ) P n (C-6)m L = mn Pnm'

m-i m,n=l
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M M

m = = Z mn 'nk k(km
m-i m,n,k=l

In order to compute the sums of the three lowest powers of the

eigenvalues of matrix P, we simply have to compute the three sums

on the elements of matrix P, as indicated in (C-5) through (C-7).

2 3In fact, there is no need to compute matrices P or P either.

Thus, a seemingly difficult numerical chore is replaced by

straightforward simple summations of products of matrix elements,

yielding a very significant savings in complexity and time.
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APPENDIX D - INVERSION OF EQUATION (60)

For notational efficiency, we suppress all the g subscripts

in (60), let Yk = X(k)/(k-l)!, and set p = M w. The nonlinear

equations then take the form

yl = b + p , y2 3 2 b c + p w

Y3 M 3 b c2 + p w2 Y4 = 4 b c3 + p w3 (D-l)

We solve the first two equations for p and b, getting

Y2 - 2 y, c yl w - Y2
w - 2 c ' b= w-2c (D-2)

These quantities are now substituted in the third and fourth

equations in (D-1), resulting in the highly nonlinear pair of

coupled equations for c and w:

c2 3 (yl w - y 2 ) + c 2 (Y 3 - Y, w ) + w (Y 2 w - y 3 ) - 0 , (D-3)

c3 4 (yl w - y 2 ) + c 2 (Y 4 - yl w ) + w (Y 2 w2- Y4 ) - 0 . (D-4)

The procedure we have adopted for solving these latter two

equations is to start with an initial guess for w as in (57),

namely

w W X(4)/6 Y4(D5w= lZ y-4  (D-5)
X(3)/2

then solve quadratic (D-3) for c; substitute this result into

(D-4) and compute the left-hand side; now vary w until the

left-hand side equals zero. Repeat these operations until c and w

stabilize. Equation (D-2) can now be used to get final values of

p and b. This is the numerical procedure used in the main text.
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APPENDIX E - TERMINATION OF INFINITE PRODUCT

If we terminate the infinite product for the characteristic

functions in (66) or (69) at limit value mn - L (> N), then the

neglected remainder product in the denominator is

Rem T1(I - i& (1-r) rml1) - 1 - i~r L _ ~2 r 2L+l +O(r IL) .(E-1)

m=L+l

This relation enables a choice of L to control the neglected

remainder. For example, &~ = 200, L = 220, r - .9 leads to

Rem - 1 - il.7E-8 - 1.4E-16. Thus, the &2 term and above can be

safely ignored. one final product in the denominator of (66), by

Lthe factor I - i~r , will account for Rem and suffice for

complete accuracy, up to compuiter round-off error in the

characteristic function evaluation. For larger values of r, it

is necessary to increase the limit L; for example, & = 150,

L - 700, r - .96915298 yields Rem - 1 - i4.5E-8 - 1E-15.

If we terminate the infinite product for the characteristic

function in M7) at 'Limit value j - L (ý J-1), the neglected

remainder product in the denominator is

Rm-B r iiB r L1 -1I- i& r L+.(E-2)

This is substantially the same as (E-1), where terms of the order
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Two-Dimensional Convolutions, Correlations, and
Fourier Transforms of Combinations of Wigner Distribution
Functions and Complex Ambiguity Functions

Albert H. Nuttall

ABSTRACT

A number of new two-dimensional Fourier transforms of
combinations of cross Wigner distribution functions, W, of
convolution form or correlation form are derived. In addition,
similar relations are obtained for combinations of cross complex
ambiguity functions, X. Their great generality subsumes most of
the already known available properties, such as: the volume
constraint of magnitude-squared ambiguity functions; the
positivity of the convolution of two Wigner distribution
functions; and Moyal's theorem. An example is displayed below:
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= Jfdt'df' exp(-i2nvtD+i2nf'r) Wab(t+½t ,f+½f') Wd(t-½t',f-½f')

= Wa (t+½r,f+½v) Wbd(t-½T,f-½V)

Extensions to contracted time and frequency arguments are
made, as well as to mixed products involving a Wigner
distribution function and a complex ambiguity function.
Additional relationships connecting the temporal correlation
function and the spectral correlation function complete a
symmetric set of very general relationships.

Approved for public release; distribution is unlimited.



TR 8759

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS iii

LIST OF ABBREVIATIONS iii

LIST OF SYMBOLS iii

INTRODUCTION 1

ONE-DIMENSIONAL TRANSFORM RELATIONS 3

Transform of Product of Waveforms 3

Special Cases 4

Application to Energy Density Spectra 5

GENERAL TWO-DIMENSIONAL TRANSFORM RELATIONS 9

Two-Dimensional Convolutions 10

Two-Dimensional Correlations 12

Mixed Relations 13

SPECIALIZATION TO WAVEFORMS 15

General Cross Properties 17

Auto Properties is

Real Waveform a(t) 19

Mirror-Image Relations 20

TWO-DIMENSIONAL TRANSFORM RELATIONS FOR WAVEFORMS 23

Two-Dimensional Convolutions 23

Two-Dimensional Correlations 25

A Mixed Relation 26

SPECIAL CASES 2,1

APPLICATION TO HERMITE FUNCTIONS 33

SUMMARY 35

i



TR 8759

Page

APPENDIX A - PRODUCTS OF CAFs 37

APPENDIX B - PRODUCTS OF WDFs 41

APPENDIX C - A GENERALIZED WDF 45

REFERENCES 19

ii



TR 8759

LIST OF ILLUSTRATIONS

Figure Page

1. General Two-Dimensional Functions 9

2. Two-Dimensional Functions for Waveforms 16

3. Symmetry Properties for Real Waveform a(t) 19

LIST OF ABBREVIATIONS

TCF temporal correlation function, (49)

SCF spectral correlation function, (51)

CAF complex ambiguity function, (53), (72)

WDF Wigner distribution function, (55), (73)

LIST OF SYMBOLS

t time, (1)

g(t) arbitrary complex function of time, (1)

f frequency, (1)

G(f) Fourier transform of g(t), g(t) 0 G(f), (1)

h,H Fourier transform pair, (4)

V frequency shift or separation, (4), (27), (51)

a,g,p,y real constants, (4)

x,X Fourier transform pair, (10), (11)

*xx auto-correlation of x, (11)

Cxy convolution of x and y, (16)

iii



TR 8759

*xy cross-correlation of x and y, (21)

R,W,X,* general two-dimensional functions, figure 1, (27)-(34)

T time delay or separation, (27), (49)

I two-dimensional convolution and Fourier transform, (39)

J two-dimensional correlation and Fourier transform, (43)

Rab cross temporal correlation function (TCF), (49)

4ab cross spectral correlation function (SCF), (51)

Xab cross complex ambiguity function (CAF), (53), (72)

Wab cross Wigner distribution function (WDF), (55), (73)

'ab scaled and contracted WDF, (61)

+ab cross-correlation of a(t) and b(t), (64)

T ab cross-spectrum of a(t) and b(t), (65)

a(t) mirror-image function of a(t), (69)

XAB definition of CAF in frequency domain, (72)

WAB definition of WDF in frequency domain, (73)

4 n(t) n-th orthonormal Hermite function, (107)

W km cross WDF between ýk and ým, (109)

a contraction factor, (C-i)

a(t) contracted waveform, (C-i)

K more general two-dimensional transform, (C-3)

p contraction parameter, (C-5)

Wab generalized WDF, (C-5)

iv



TR 8759

TWO-DIMENSIONAL CONVOLUTIONS, CORRELATIONS, AND

FOURIER TRANSFORMS OF COMBINATIONS OF WIGNER DISTRIBUTION

FUNCTIONS AND COMPLEX AMBIGUITY FUNCTIONS

INTRODUCTION

Over the years, a number of properties of integrals of

products of complex ambiguity functions (CAFs) or products of

Wigner distribution functions (WDFs) have been derived, such as:

the volume constraint of magnitude-squared ambiguity functions

[1; page 308], the positivity of the convolution of any two WDFs

[2; (106)], and Moyal's theorem involving the volume under the

square of a WDF [3]. Now, it appears that these are very special

cases of a general class of two-dimensional Fourier transforms of

combinations of CAFs and WDFs with delayed or time-reversed

arguments.

We begin by deriving a general one-dimensional transform

relation involving two arbitrary complex waveforms and their

Fourier transforms. An application of this relation to energy

density spectra yields three alternative expressions for the

output correlation of a filtered time function. This general

transform relation is also the basic tool for setting up the two-

dimensional transforms that are the subject of succeeding

sections. The extreme generality of the two-dimensional

relations allows for a large number of special cases; some of

these are pointed out, but undoubtedly there are additional ones

not listed here.

I1
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When we begin our two-dimensional transform investigation, we

do not immediately specialize to WDFs or CAFs. Rather, we first

consider a set of four general functions, each of two variables,

all of which are related to each other by Fourier transforms. We

show that two-dimensional Fourier transforms of products of pairs

of these general functions are all equal to a common value,

although that value cannot be expressed in any simple closed

form. These relations are derived for convolution type

operations as well as for correlation operations.

When we make a specialization of these results to waveforms,

relatively simple closed form results, in terms of products of

WDFs and CAFs, are obtained for these two-dimensional transforms.

And when the arguments of these relations are further specialized

in value (such as zero), some of the currently known relations

involving CAFs and WDFs result.

Extensions of these results to time contracted or expanded

arguments are made in the appendices. Again, specializations to

waveforms yield closed form results, in terms of products of WDFs

and/or CAFs.

2
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ONE-DIMENSIONAL TRANSFORM RELATIONS

Function g(t) is an arbitrary complex function of real

argument t, which will be thought of as time. Its Fourier

transform will be denoted by complex function G(f), where

G(f) = fdt exp(-i2nft) g(t) . (1)

Integrals without limits are along the real axis and over the

range of nonzero integrand. Argument f is a real cyclic

frequency, not a radian frequency. The inverse Fourier transform

relation to (1) is

g(t) = Jdf exp(+i2nft) G(f) . (2)

The Fourier transform pair in (1) and (2) will be denoted by

g(t) * G(f) . (3)

Similarly, h(t) and H(f) will be a Fourier transform pair.

TRANSFORM OF PRODUCT OF WAVEFORMS

The variables v,a,p,p,y are all real in the following. A

generalization of Parseval's theorem is then possible, namely

•dt' exp(-i2nvt') g(at+At') h*(pt+yt') = exp i2nvt ay+A] x

x Jdv' exp(i2nv't(ay-0p)) G(y(v'+ v )) H*('A.- 2v)) (4)

3



TR 8759

where it is presumed that A # 0 and y # 0. This result may be

derived by substituting for g according to (2), interchanging

integrals, and using (1) for Fourier transform pair h(t) 0 H(f).

A more symmetric form for relation (4) is available, if desired:

•dt' exp(-i2nvt') g(p[t'+ t•] h*(y(t'- 2t)f 2py 2g
{dv' exp(+i2nv't) G(y(l'+ v H*((,' 2;)) (5)

SPECIAL CASES

By specializing the parameter values in (4), several

interesting and useful results can be obtained. For example, if

we take y = A, p = -a, then we obtain a combined one-dimensional

Fourier transform and correlation:

{dt' exp(-i2nvt') g(At'+at) h*(At'-at)

= fdv' exp i2nv't2aA) G(•v'+ -2 H*(v)'- " (6)

On the other hand, if we take y = -A, p = a in (4), there

follows a combined one-dimensional Fourier transform and

convolution:

fdt' exp(-i2nvt') g(at+At') h* (at-At')

= fdj' exp i2nv't2ap) G( v +A l) H*(- -! v • (7)

4
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Further specialization to the specific numerical values

y = = 1, -p a = ½, in (6) yields

jdt' exp(-i2nvt') g(t'+ht) h*(t'-½t) =

- Jdv' exp(+i2nv't) G(v'+ýv) H*(v'-ýv) .(8)

Alternatively, the choice -y = A = h, p = a = 1 in (7) yields

jdt' exp(-i2nvt') g(t+Wt') h*(t-½t') =

= dv' exp(+i2rv't) G(v+ýv') H*(v-½v') .(9)

APPLICATION TO ENERGY DENSITY SPECTRA

Case 1. Suppose that we choose

G(v) = IX(v)l 2 , H(v) = IY(v)l 2 (10)

which are the energy density spectra of waveforms x(t) and y(t),

respectively. Then 9(t) = +xx(t) and h(t) = yy (t), where xx(t)

is the auto-correlation function of complex waveform x(t):

+xx(t) = fdu x(t + u) x*(u) • (11

The use of (10) and (11) in (8) yields

5
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11 (t,V) SE fdv exp(+i2nv't) IX(v'+½v)I 2 Iy(v,-½v)I =

- dt' exp(-i2nvt') +xxt'+½t) 4,* (t'-½t) . (12)
yy

The last term in (12) is identical to x y(tt)

The special case of v = 0 in (12) reduces to

I 1(tO) = Jdv' exp(+i2rrv't) fX(v,'12 Iy(v,)I =

. fJdt, +' (t'+½t) P* (t'-½t) .(13)xx yy

The additional restriction to t - 0 becomes

= {dt' + ~(t') 4'* (t') . (14)
xx yy

Case 2. Here, instead, make the identifications

G(v) =X(v) Y(v) - H('v) .(15)

Then

g(t) - CX(t) * du x(u) y(t-u) - h(t) ,(16)

which is the convolution of x(t) and y(t). Substitution of (15)

and (16) in (8) gives

6
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I 2 (tlv) f dv' exp(+i2rrv't) X(v'+½v) Y(V'+½v) X*(vI-½v) Y*(v'-½v)

-fdt' exp(-i2nvt') C xy(t'+½t) C X (t'-½t) .(17)

Setting v to zero yields

I 2(tO) = Jdvl exp(+i2nv't) IX(v,)I2 Iy(v')I =

= fdt' C, (t'+½t) C*, (t'-½t) .(18)

Finally, also setting t equal to zero,

1 2(010) = fd j X(v')1 Iy(v')j2 =Jd' xyt,]2(9

Case 3. Now identify

G(v) = X(v) Y*(v) = H(v) .(20)

Then

g(t) = 1x(t) afdu x(u + t) y*(u) =h(t) ,(21)

which is the cross-correlation of x(t) and y(t). The use of (20)

and (21) in (8) leads to

I13 (t~v) m jdv' exp(+i2nv't) X(v'+½v) Y*(v,+½) X*(v'-½v) Y(v'-½v)

-fdt' exp(-i2nvt') *y(t'+½t) 4~,X (t'-½t) .(22)

The result of setting v to zero is

7
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I 3 (tO) = fdvl' exp(+i2nv't) IX(v")1 2 ly(v')l2

= fdt' *x (t'+½t) ** (t'-½t) . (23)
xy xy

When t is also set equal to zero, (23) reduces to

I3(0,0) = fdv' IX(v')f2 IY(v')1 2 - {dt' 1+ xy(t)! . (24)

It should be observed that the upper lines of (13), (18), and

(23) are identical to each other; that is,

I1(t,0) - 12 (t,0) = 13 (tO) . (25)

Therefore, the lower lines of (13), (18), and (23) furnish three

equal alternative expressions involving autocorrelations,

convolutions, or cross-correlations, respectively.

There are many other possibilities for identifications of G

and H in (8), besides (10), (15), and (20). For example, we

could take

G(v) - IX(v)l2 Y(v) , H(v) = Y(v) . (26)

However, it may be shown that this choice leads identically to

result (13) when v is set to zero; so not all selections yield

new relations. Additional convolution type relations may be

obtained if (9) is used instead of (8).

8
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GENERAL TWO-DIMENSIONAL TRANSFORM RELATIONS

In this section, we will consider a set of four general

functions, each of two variables, which are related to each other

by Fourier transforms. These four functions are indicated in

figure 1, where a two-headed arrow denotes a Fourier transform

relationship. These functions are, for the moment, arbitrary

complex functions of two variables; they are not necessarily

Wigner distribution functions or complex ambiguity functions.

R(t,r) - X(vT)

I I
W(t,f) - *(Vf)

Figure 1. General Two-Dimensional Functions

The paired transform variables, here and for the rest of the

report, are t * v and t * f. The detailed Fourier transform

interrelationships between the four functions in figure I are

X(V,T) = fdt exp(-i2rvt) R(t,T) , (27)

R(t,T) f Jdv exp(+i2nvt) X(v,t) , (28)

W(t,f) = Jdr exp(-i2nft) R(t,r) , (29)

R(t,T) = fdf exp(+i2nfT) W(t,f) , (30)

9
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O(V,f) { fdt exp(-i2nvt) W(t,f) , (31)

W(t,f) = {dv exp(+i2nvt) f(v,f) , (32)

§(V,f) = Jdr exp(-i2nfT) X(V,) , (33)

X(V,t) = {df exp(+i2ift) 4(v,f) . (34)

A double Fourier transform relationship exists between R and *,

as well as between W and X.

TWO-DIMENSIONAL CONVOLUTIONS

We repeat (9) here, but with a change of variables t 4 r and

V + f:

fdr' eyp(-i2nfT') g(T+½T') h*(rT-r')

=Jdf' exp(+i2nf'T) G(f+½f') H*(f-½f,) . (35)

Let X, and X2 be two different functions of the type indicated in

figure 1, and consider (35) with the assignments

g(r) ' Xl(vaIT) , h(T) = X2 (vb'r) - (36)

The corresponding Fourier transform pairs for (36) are

G(f) = l(vatf) , H(f) = 02 (vb,f) , (37)

upon use of (33). There follows, from (35),

10
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fdr' exp(-i2nft') Xl(va T+ýT') X2 (vb,T-')=

= Jdf' exp(+i2Tf'T) Yl(va'f+½f') 02 (vb,f-½f') (38)

See appendix A for the most general result of this form.

If we now let va = v+ýv' and vb = v-½' in (38), then an

additional Fourier transform on v' yields the middle two lines

in (39) below. More generally, in a similar fashion to that used

above, we find that the combined two-dimensional convolution and

Fourier transform can be exp::essed in four equivalent forms:

I(V,f,t,r) = (39)

= jjdt'dr' exp(-i2nvt'-i2rTfr') Rl(t+½t',T+½t') R(t-½t',r-½t' =

= {jdv'dr' exp(+i2nv't-i2nfT') Xl(V+½v',r+½r') x 2 (v-½',z-½r') =

= fdfv'df' exp(+i2nv't+i2nf'r) 4I(V+½V',f+½f') (2

= Jjdt'df' exp(-i2nvt'+i2nf'r) Wl(t+½t',f+½f') W2 (t-½t',f-½f')

Alternative forms of (39) are available; for example, the

last line can be written in the more typical convolution form

Jdt'df' exp(-i2nvt'+i2nf'r) Wl(t',f') W2 (t-t',f-f') =

- 1 exp(-invt+infr) I(½V,½f,½t,½r) . (40)

41
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TWO-DIMENSIONAL CORRELATIONS

Here, we use (8) with identifications

g(t) = Ri(t'Ta) h(t) - R2 (trb)

G(v) Xl(vTa) H(v) = X2 (VTb) (41)

Then there follows immediately

•dt' exp(-i2nvt') Rl(t'+ht,Ta) R*(t'-ht,Tb

- dv' exp(+i2nv't) Xj(v'+½v,ra) X2(V'-V,Tb) . (42)

Now let Ta = T'+½r and Tb = t'-½t, and Fourier transform on

T'. The result is the first two relations, given below, of four

equivalent forms of the combined two-dimensional correlation and

Fourier transform

J(V,f,t,t) (43)

= ffdt'dr' exp(-i2nvt'-i2nfr') Rl(t'+½t,T'+½T) R*(t'-½t,T'-½r) =

= fdvl'dr' exp(+i2nv't-i2nfT') Xj(V'+½VT'+½r x2('-½vr'-r) =

{ jdv'df' exp(+i2nv't+i2nf'r) 1 (v1'+½v,f'+½f) 2(v'-v,f'-½f) =

- {{dt'df' exp(-i2nvt'+i2nf'T) Wl(t'+½t,f'+½f) W*(t'-½t,f'--f)

Alternative forms to (43) are possible; for example, the last

line can be expressed in the more typical correlation form

12
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fdt'df' exp(-i2nvt'+i2nf,) wc(t',f) W*t'-t,f-f)

= exp(-invt+infr) J(v,f,t,r) . (44)

MIXED RELATIONS

The results in (39) and (43) all involve two W(t,f)

functions, or two X(v,r) functions, etc. However, it is possible

to obtain relations which involve, for example, one W(t,f)

function and one X(v,r) function. As an illustrative example,

consider (9) with g(t) = Wl(tfa) and h(t) - x 2 (fbt). Then,

from figure 1, G(v) - *1(vfa) and H(v) = # 2 (fbv), giving

Jdt' exp(-i2nvt') Wi(t+½t',fa) x(fbt-½t') =

= Jdv' exp(+i2nv't) 1 (v+½v',fa) (fb,v-½v') . (45)

If we now let fa = f+½f' and fb = f-f', and perform a

Fourier transform on f', there follows immediately

Jjdt'df' exp(-i2nvt'+i2nf'r) Wl(t+ht',f+½f') x2(f-½f',t-½t') =

(46)

ffdv'df' exp(+i2nv't+i2nf'r) § 1 (V+½',f+½f') *(f-½f',v-½v')

Thus, a combined two-dimensional convolution and Fourier

transform of a W(t,f) function and a X(v,r) function can be

expressed in terms of two 4(v,f) functions. (Strictly, some of

the argument!, are reversed, as seen in (46).)

13
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If, instead, we use (8) with g(t) and h(t) assigned as above,

then we obtain

dt' exp(-i2nvt') Wi(t'+½t~fa) X2(fb,t'-t) =

fdv' exp(+i2nv't) i(V'+½vfa) #*(fbv'-½) (47)

Letting fa = f'+½f' fb = f'-½f, and performing an additional

Fourier transform on f', there follows

dt'df' exp(-i2nvt'+i2nf'T) Wl(t'+½t,f'+½f) x 2 (f'-½f,t'-½t) =

(48)

= ffdv'df' exp(+i2nv't+i2nf'r) fl(V'+½v,f'+½f) •(f'-½f,v'-½v)

Here, a combined two-dimensional correlation and Fourier

transform of a W(t,f) function and a X(V,T) function can be

expressed in terms of two f(v,f) functions. (Again, some

arguments are reversed or replaced. However, the first argument

in a X function is always a frequency variable, while the second

argument is always a time variable; similar restrictions hold for

the remaining functions R, W, 0 in figure 1.)

14
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SPECIALIZATION TO WAVEFORMS

In the previous section, the functions R, W, X, I were

arbitrary, except that they were related by Fourier transforms

according to figure 1. Here, we will specialize their forms,

thereby enabling more explicit relations for their two-

dimensional convolutions and correlations.

For arbitrary complex waveforms a(t), b(t), c(t), d(t), let

Rl(t,r) = a(t+½t) b*(t-½t) a Rab(t'" (49)

R2 (t,r) = c(t+½r) d*(t-½T) = Rcd(tT) (50)

These are known as (cross) temporal correlation functions (TCFs).

Thus, Rab(tt,T) is the "instantaneous" cross-correlation between

waveforms a and b, corresponding to center time t and separation

(or delay) time r. Then, from (31) and (29), or [4; (35)], there

follows

0l(vf) = *ab(,vf) = {Jdt dr exp(-i2nvt-i2JTf) Rab(tT) =

= A(f+½v) B*(f-ýv) , (51)

42 (vf) = lcd(vf) = C(f+½v) D*(f-½v) (52)

These functions are known as (cross) spectral correlation

functions (SCFs). (In [4], the notation A(v,f) was used for this

function; however, A(f) will be used here for the Fourier

transform of waveform a(t).) The SCF corresponds to center

frequency f and separation (or shift) frequency v.

15
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The Fourier transform relationships in figure 1 and equations

(27) - (34) still hold true, but now are specialized to the

waveform cases above. Specifically, figure 2 illustrates the

four two-dimensional functions for waveforms a(t) and b(t), where

now W1 = Wab is a cross Wigner distribution function (WDF) and

X= Xab is a cross complex ambiguity function (CAF).

TCF R ab(t'r) Xab(vr) CAF

I I
WDF W ab(tf) *----- ab(v',f) SCF

Figure 2. Two-Dimensional Functions for Waveforms

The detailed Fourier transform interrelationships are now

Xab((V,) = Idt exp(-i2nvt) Rab(t"[) (53)

Rab(t,T) = fdv exp(+i2nvt) Xab(VT) (54)

Wab(tlf) = fdT exp(-i2nfr) Rab(t,r) (55)

Rab(tr) = Jdf exp(+i2rft) Wab(tlf) (56)

4ab(vf) = fdt exp(-i2nvt) Wab(tf) , (57)

Wab(t,f) = Jdv exp(+i2nvt) *ab(vf) , (58)

16
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0ab(v•,) Jdt exp(-i2nft) Xab(v,), (59)

Xab( VT) J'df exp(+i'nfr) 'ab(vf) . (60)

The function W aa(t,f), for example, is an auto WDF, since it

involves only one waveform, a(t). We will frequently drop the

terminology auto and cross, when possible without confusion, and

let the notation indicate the particular case.

It will be found advantageous for future purposes to define a

scaled and contracted WDF according to

Wab(t~f) = ½Wab(½t,f) (61)

GENERAL CROSS PROPERTIES

Due to the restriction of form taken on by the TCF in (49)

and the SCF in (51), the four functions in figure 2 obey some

symmetry rules; they are

Rab(t,-t) = Rba(tT)

0ab(-vf) = tba(vf)

Xab(-v,-T) m Xba(VT)

Wb(t,f) = Wb(t,f) (62)

17
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AUTO PROPERTIES

When waveform b(t) = a(t), some specializations follow:

R a (t,-r) =R aa(t,T)
aa aa

#aa(-v,f) = @aa(v,f)

Xaa(-V,-T) = Xaa (V,T)

W aa(t,f) = real for all t, f, a(t), (63)

with the only significant specialization being the realness of

WDF W aa(t,f). Waveform a(t) can still be complex.

SOME SPECIAL CASES

The ordinary cross-correlation of two waveforms a(t) and b(t)

is a special case of a CAF:

b(t) - Jdt a(t) b*(t-r) = Xab(0, ) • (64)

The ordinary cross-spectrum is then a special case of an SCF:

T f - dT exp(-i2nfT) lab(T) = ab 0 ,f) = A(f) B*(f) (65)

The autospectrum is then simply

T aa (f) = 0aa 0 ',f) = IA(f) 1 , (66)

which is always nonnegative.

The ordinary convolution of two waveforms a(t) and b(t) is a

special case of a WDF:

jdr a(r) b*(t-r) = ½Wb(½t,0) = Web(t,0) . (67)

18



TR 8759

REAL WAVEFORM a(t)

In addition, if waveform a(t) is real, the following (auto)

properties hold true:

Raa (t,-t) = Raa(tT) and Raa is real

4 aa(V,-f) = 0 aa(Vf) I

Xaa(V,-T) = Xaa (V,T)

W aa(t,-f) = W aa(tf) . (68)

The situation for a real waveform a(t) is summarized in figure 3

below.

t t

R x.

t

R * xX
TCF CAF

f f

t

W*

WDF SCF

Figure 3. Symme'ry Properties for Real Waveform a(t)

19
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MIRROR-IMAGE RELATIONS

For general complex waveforms a(t) and b(t), define

mirror-image functions

a(t) = a(-t) , b(t) = b(-t) . (69)

Then it follows directly that the voltage density spectrum of

mirror-image a(t) is

A(f) = Jdt exp(-i2nft) a(t) = A(-f) , (70)

which is the mirror-image of A(f). Also, there follows

Rab(-t,-T) = Rab(tIT)

.ab(-v,-f) = tab(V'f)

Xab(-V,-T) = Xab(VT)

Wab(-t,-f) = Wab(tf) . (71)

Thus, the mirror-image property for A(f) carries over into all

the two-dimensional domains, such as the WDF and CAF, as well.

There is no significant simplification for b(t) = a(t), except

for the realness of Waa (t,f), as before.

Use of mirror-image definition (69) allows for an interesting

connection between WDFs and CAFs. First, substituting (49) into

(53) and (55), we have cross CAF
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Xab(v't) = {clt exp(-i2nvt) a(t+½t) b*(t-½r)=

- df exp(-.-i2rifT) A(f+½v) B*(f.-½v) X(VIT) (72)

and cross WDF

Wab(tlf) = JdT exp(-i2nfT) a(t+½r) b*(t-½T)

- dv exp(+i2iivt) A(f+½v) B*(f-½v) - WA~l)(73)

Reference to (69) now immediately reveals that

W b(t~f) = 2 Xab (2f,2t) (74)

or

Xab(v T) = '21W b(½r1ýV) = !ab (T'V) .(75)

Here, we also used (61). That is, the WDF of two waveforms

a and b is proportional to the CAF of waveforms a and b, the

mirror-image of b.

Finally, since

B *(f) * b*(-t) = b*(t) ,(76)

then, using (72),

x A *('r)= fdf exp(i2nft) A(f+½v) B(f-½v)=

=X I(~)=*. ~(½r,½v) = T,~rtV) *(77)

ab Wab* ab*
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TWO-DIMENSIONAL TRANSFORM RELATIONS FOR WAVEFORMS

In an earlier section, general two-dimensional transform

relations were derived between sets of four functions related by

Fourier transforms; see figure 1 and (39) and (43). Here, we

will utilize the particular forms considered in the previous

section for waveforms (see figure 2) and will derive closed forms

for I and J in (39) and (43), respectively.

TWO-DIMENSIONAL CONVOLUTIONS

If we substitute (49) and (50) in the top relation in (39),

there follows

I(V,f,t,r) = Jfdt'dr' exp(-i2nvt'-i2nfr') a(t+½t'+½r+¼T') X
*~ *

x b*(t+½t'-hr-¼r') x c (t-½t'+½T-¼r') d(t-½t'-½r+¼r') . (78)

Now let

u = ½t'+hr', v = ½t'-¼T'; u+v = t', 2(u-v) = T'. '79)

Since the Jaoobian of this tiansfoimation is 4, (78) becomes

I(v,f,t,T) = 4ffdu dv exp(-i2mv(u+v)-i2nf2(u-v)J x

x a(t+hT+u) b*(t-½T+v) c*(t+½r-u) d(t-½r-v) =

Jdu' exp(-i2nu'(f+½v)) a(t+½r+½u') c*(t+T-ý½u') X

x Jdv' exp(+i2nv'(f-½v)) b*(t-½r+½v') d(t-½r-½v') =
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= Wac(t+½rf+½v) Wbd(t-½t,f-"½) . (80)

That is, all the following quantities are equal:

I(v,f,t,t) -

= jJdt'dr' exp(-i2n't'-i2nfr') RabTt+½t',t+½t') R

= Jfdv'dt' exp(+i2Tv't-i2nfr') Xab(V+V' T+rT') Xcd(*',T-tr')=

= fdv'df' exp(+i2nv't+i2nf'r) tab(v+½V',f+½f') $ d(v-½v',f-½f')=

= Jjdt'df' exp(-i2nvt'+i2nf'T) Wablt+½t',f+½f') Wdlt-tf-f'l

- W (t+½tf+½V) Wbd(t-½t,f-v). (81)
ac dtrf"

All four double-integrals in (81) can be expressed as a product

of the same two one-dimensional integrals, which are cross WDFs.

This reduction is only possible when the two-dimensional

functions, like Wab and Xab, are WDFs and CAFs, respectively.

The transformations in (81) are comoined two-dimensional Fourier

transforms and convolutions of TCFs, CAFs, SC~s, or WDFs.

By use of (74), an alternative expression for the end result

in (81) is

I(v,f,t,r) = 4 Xac (2f+v,2t+r) Xbd( 2 f-v, 2 t-T) , (82)

in terms of mirror-image functions; see (69). Also, a more

typical convolution form for (81), for example, is (using (61))
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j du dv exp(-i2nvu+i2nvr) Wab(UIv) Wcd(t-ulf-v)

exp(-invt+infr) Wac(t+½r,f+½v) Wbd(t-t,f-v) (83)

TWO-DIMENSIONAL CORRELATIONS

In an identical fashion to that used above, result (43)

becomes

J(V,f,t,r) =

= fJdt'dr' exp(-i2nvt'-i2nfr') Rab(t'+½t~t'+½t) Rcd(t'-½t,r'-½r}=

= ffdv'dT' exp(+i2nv't-i2nfT') Xab'+V+½v,T'+½) Xcd v* ½vr½t)=

= dv'df' exp(+i2rv't+i2nf't) a ('. +½v,f'+½f) Icd(-½,f-½f)

= dt'df, exp(-i2rvt'+i2nf'r) W W*

= JJULUJ. W~b(t'+½t"t+f) Wcd~t½~~)

x ac(f+½vt+½r) Xbd(f½•v,t_%T) . (84)

All these double integrals in (84) are equal to a product of two

cross CAFs. Again, this only holds for the special forms of the

two-dimensional functions, like Wab and Xab' which are WDFs and

CATs, respectively. The transformations in (84) are combined

two-dimensional Fourier transforms and correlations of TCFs,

CAFs, SCFs, or WDFs.

By use of (75), an alternative expression for the end result

in (84) is
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J(v',f,t,r) = Wac(t+½trf+½") Wbd(t½T~f½v) (85)

in terms of mirror-image functions. Also, a more typical

correlation form for (84) is, for example,

J du dv exp(-i2nvu+i2nvr) Wab(uv) Wcdd(u-tv-f)

= exp(-in\)t+infr) Xac(f+½vt+½t) Xbd(f-½V,t-in) (86)

A MIXED RELATION

As an example in this category, if we take (46) with

Wl(tf) = Wab(ttf) , X2 (V,T) = Xcd( 2 v, 2 r) , (87)

then

tl(vf) =ab(vf) A(f+½v) B*(f-½v)

2 = t #cd( 2 v,½f) = C(½f+v) D*(½f-v) . (88)

Substitution of these results in (46) yields

ffdt'df' exp(-i2rvt'+i2nf'r) Wab(t+½t',f+½f') Xcd( 2 f-f',2t-tl)

= Wac (t+½T,f+½V) X*d(2f-v,2t-T) . (89)

this mixed relation is a two-dimensional Fourier transform and

convolution, involving a WDF and a CAF, expressible in closed

form as a product of another WDF and CAF.
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SPECIAL CASES

The two-dimensional transform results in (81) and (84) in the

previous section involve four arguments, namely v,f,tr, and four

functions, a(t), b(t), c(t), d(t). Their extreme generality

allows for numerous special cases upon selection of the

arguments and/or the functions. We consider some of these

possibilities, but are aware that this list could be considerably

augmented.

Case 1. As an example of the generality of these results,

consider in (84) the particular selection

v = f = t = T = 0, c(t) = a(t), d(t) = b(t'. (90)

There follows immediately the "volume constraint"

Jjdv'dr' IXab(v',-r)12 = {Jdt'df' IWab(tf')f2 =

= Xaa( 0 ,0) Xbb( 0O 0 ) = Jdt Ja(t)1 2 Jdt Ib(t)1 2 . (91)

Case 2. In (84), take v = r = 0, b(t) = a(t), d(t) = c(t;.

Then there follows, upon use of (85),

dv'dt' exp(+i2nv't-i2nfr') Xaa(V',T') Xcc(V',t') =

- Vdt'df' W aa(t'+t,f'+½f) Wc(t'-½t,f'-½f) =

I IXac (f~t)1 2 = I7ac(t'f)12  (92)
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which is nonnegative real for all f, t, a(t), c(t). Thus, the

two-dimensional correlation of two auto WDFs is ncnnegative.

An alternative form of (92) is

{Jdu dv Waa (U,V) Wcc (U-t,v-f) Ixac(ft)12 (93)

Further specialization to t = f = 0 yields

{{du dv Waa(U,V) Wcc (U,V) = Xac(0,0) 12 = fdt a(t) c*(t) 2 , (94)

which yields Moyal's result [3] for c(t) = a(t), namely

Jdt df W 2a(tf) = [dt la(t)1 2J2  (95)

Case 3. In (81), take v = T = 0, b(t) = a(t), d(t) = c(t).

We then get the "smoothing result"

j'dt'df, Waa(t+½tlf+½f') Wcc(t½t',f½f') =

W ac(t,f) 12 = jfdr' exp(-i2nfr') a(t+½r') C(t-TF) 12 a 0 (96)

for all t, f, a(t), c(t). An alternative form is

ffdu dv Waa(U,v) Wcc(t-u,f-v) = I ac(½t½f) = 2W(tif)12

SdT1 exp(-i2rfT') alr') c *(t-r')j2 . (97)

That is, the two-dimensional convolution of two auto WDFs is

never negative (just as for the correlation in (92)).
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Case 4. Using (62), the same basic end result is obtained

from (81) for the following double integral involving CAFs:

Jfdv'dT' exp(+i2nv't-i2rfT') Xaa(½VI',r') Xcc(½V',½T') =

= Wac(t,f)12. (98)

This right-hand side is nonnegative real for all t, f, a(t),

c(t). An alternative form is, upon use of (61),

[[dv dr exp(+i2avt-i2nfr) Xaa(VIt) Xcc(VI)= Iac(t'f)l2 (99)

Case 5. Consider (81) with c(t) = a(t), d(t) = b(t). Then

the right-hand side of (81) is always real. For example, we have

r * ( - ', - • )dv'dT' exp(+i2nv't-i2nfr') Xab(+',+½T') XabTT')

Jfdt'df' exp(-i2nvt'+i2nf'T) W t+½tf+½f') Wab(t-½t',f-½f')=

= Waa (t+½r,f+½V) Wbb(t-½T,f-½hV) . (100)

This is real for all t, r, f, v, a(t), b(t), although it could go

negative.

Case 6. From (81), with v - T = 0, there follows

f dt'df' Wab(t+½t',f+½f') Wcd(t-½t ,f-½f)

SWac (t,f) Wbd(t,f) , (101)
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or, with the help of (61) and (75), alternative form

j du dv Wab(UIv) Wcd(t-uf-v) =

Lac(tf) Lbd(tf) - Xac(ft) X4d(ft) • (102)

Furthermore, if we set c(t) - a(t), d(t) = b(t), we obtain

J du dv Wab(U,v) Wab(t-ulf-v) =

Waa(tf) Wbb(t,f) Xaa(fit) Xbb(flt) . (1031

Thus, the two-dimensional convolution of a complex cross WDF with

itself is always real, but could go negative.

Case 7. From (83) and (84), with v - r - 0, there follows

f dt'df' Wab(t'+½tff'+½f) W*d(t-t~ f-t) -

- jjdu dv Wab(UV) Wcd(u-t,v-f)

- jjdv'dt' exp(+i2nv't-i2nfT') Xab("',T') Xcd((V',')

- Xac(ft) Xbd(ft) - Wac(t,f) Wbd(f) ) . (104)

The two-dimensional correlation of two cross WDFs is a product of

two cross CAFs.
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Case 8. If we now set c(t) - a(t) and d(t) = b(t) in (104),

we obtain

J du dv Wab(UV) Wab(u-tIv-f) =

= Jdv'dT' exp(+i2r''t-i2nfT') IXab(v',T')I

Xaalf~t) Xbb(ft) = Waa(tf) Wbb(tf) . (105)

The two-dimensional correlation of a cross WDF with itself is a

product of two auto CAFs.

Case 9. From (84), with t = f = 0, c(t) = a(t), d(t) = b(t),

and with the help of (63), we find

Jfdt'df' exp(-i2nvt'+i2nf'r) IWab(t',f')l =

= Xaa(½v',½) Xbb(½V,½T) . (106)

This is a generalization of (91).
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APPLICATION TO HERMITE FUNCTIONS

This material is heavily based on [5; appendix A, (A-36) and

the sequel]. Let n(t) be the n-th orthonormal Hermite function

with linear frequency-modulation, as given in [5; (A-36)]. Also

let waveforas

a(t) = Lýk(Pt), b(t) = 4j(yt), c(t) = ým(pt), d(t) = <n(yt). (107)

The particular cross WDFs

"Wab(tlf) = JdT exp(-i2nfT) k(Pt+½Pt) Lj(yt-½yT) ,

Wcd(t,f) tr exp(-i2nfT) m(Pt+ýPT) ý*(yt-ýyr) , (108)

cannot be expressed in closed form. However, the cross WDFs

"Wac (tf) = [dt exp(-i2rfT) tm(*+) t- T½) =

-Wm(pt,f/p) (109)
P km(tfP

and

1
Wbd(tf) = - Wjn(yt,f/y) (110)

can be simply expressed, in the notation of [5; (A-40) and

(A-41)]. Thus, the very complicated two-dimensional convolution

and Fourier transform in (81), of Wab and Wcd, can be written in

a closed form involving the product of two generalized Laguerre

functions. Numerous specializations are possible.
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SUMMARY

Some very general two-dimensional Fourier transforms of

convolution and correlation form have been derived for various

combinations of WDFs and CAFs. In particular, closed forms for

the convolution form are given in (81), while results for the

correlation form are given in (84). Numerous special cases may

be obtained from these results, of which a brief list has been

presented in (90) - (106).

Some extensions to more general arguments have been derived

in appendices A and B. In particular, appendix A treats the case

where a product of CAFs is of interest, while the case of a

product of WDFs is considered in appendix B. The possibility of

a combined convolution and correlation has also been considered

in appendix A.

For signals reflected off moving targets, it is necessary to

define a generalized WDF, allowing for contracted arguments.

This possibility has been considered in appendix C, where a

two-dimensional Fourier transform and convolution has been

evaluated in terms of the generalized WDF.

The results of this report should enable rapid evaluation of

integrals of products of WDFs and/or CAFs with a wide variety of

arguments and including exponential terms with linear arguments.

They also significantly extend a number of special cases already

known in the literature.
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APPENDIX A - PRODUCTS OF CAFs

In this appendix, we will further generalize the results in

(81) and (84), for products of two CAFs, to allow for more

general arguments. However, we begin by considering general

two-dimensional functions as in figure 1. In particular, let

g(T) = Xl(a ,T) , h(r) ' X2 (vbT) , (A-i)

in (4). Then

G(f) = 1(Va ,f) I H(f) = 4 2 (vb,f) , (A-2)

giving

Jdr' exp(-i2nft') Xl(va' A'+aT) X 2(vb,Yt'+YT) = exp i2gfty¥+) x

x J'df' exp(i2uf'T(ay-AP)J hl(vaiy f'+ 22y)) .;(Vb'6(f'- fJ) =

_ 1 f +exp i2nfTa ) df' exp(i2nf'T) x

X 4 yff+ f' *((-31a -p ay-e p 2g 2 - f3
) +(b a•b 'p g-6 2y

Now, let va-aVI+rV, V b=yv'+Pv, where the boldface constants

are unrelated to their counterparts; that is, P need not equal J,

with the same true of a,p,y. Then Fourier transform (A-3) on v'

to obtain
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Jdv'dr, exp(+i2nv't-i2nft') Xl(pv'+av,gt'+aT) X;V+~ '+PT=

- Ii~jexp i2nfrax+OP {dv'df' exp(+i2nv't+i2rtf'T) X

In general, we cannot proceed any further on this double integral

of a product of general two-dimensional functions Xand X2 '

Now let R1and R2be TCFs; that is,

Rj(t,T) = a(t+½T) b*(t-½r) = .ab( t,r)

R 2(t,T) = c(t+½t) d*(t-½t) = R d( t,T) (A-5)

Then 41and §2become ".Fs:

11(~f)= fab(vff) = A(f+½v) B* (f-½v)

02vf = cd(vlf) = C(f+½v) D* (f-½v) (A-6)

As a first case, let y=A and y=A. Then (A-4) becomes

fJdv'dr'exp(i2nv't-i2nfT') X ab( fv'+avAr'+aT) Xcd( PV'+PV,AT'+PT)=

1 je(-p p eXi2JnfTR-p Jdv'df' exp(+i2rrv't+i2nf'T) X

x A( f' +½l +½ftv'+½ctv) B*( fj +4½ -½ov'-½a'v) x

c*x . -½ +½frv'+½pv) D(5 -½ -hftv'-½Pv)=
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- 1exp(+i2rfT a+lu ___,S+k

x Xa f +ýV (a-J) , t +%rý-T bd(a-p) a-),-ýT(a-pl) .(A-7)

Thus, this very general two-dimensional correlation and Fourier

transform of cross CAFs can be expressed as a product of two

different cross CAFs. For A=P=i, a=a=½, p=p=-½, this result

reduces to (84).

As a second case, let y=-A and y=-A. Then (A-4) becomes

dv'dr'exp(i2nv't-i2nfT') Xab(av+tv',aTr+r') XcdPT-OT',pt-0 ')=

= •(~glexp i2nfra- dv'df, exp(+i2nv't+i2nf'r) x

". A(f +4 +½PvD+hav) B*(, +4i -+•v'-½av} X

"c* (ML' +½-f -½Pv'+½wvJ D(Lf +k! +½Av'-½Pv)

exp(+i2nfr a- -i2rrvta'
2- 2A)-

X Wacg +kt(a+p),I +kva# b -ra,, (a+p+# ,(A-8)

where we used (61). Thus, this very general two-dimensional

convolution and Fourier transform of cross CAFs can be expressed

as a product of two different cross WDFs. For a=•=½, a=l,

p=p=l, this result reduces to (81).
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As a third case, let y=p, y=-A. There follows a two-

dimensional relation involving both a convolution and a

correlation:

fdv'dt 'exp(i2rrv't-i2nfr') X XAbv'+aV,A '+aT) x~a~'IV~ +t

- Iexp1-ri.~nfra 2 i2nvtP

where W(t,f) = 1W(½t,½f) again. Observe the conjugates on

subscripts d and c of the scaled WDFs W.

For ~==,a=a=l, p=p=l, this relation becomes

{dv'dT' exp(i2nv't-i2rtfr') XabV½ Tri½)X~~~ I+½T')

-4 exp(i4nfT) ad( 2 t, 2 f+v) Vc* ( 2 t, 2 f-v)=

=exp(i4rtfT) W t f+½V) w* (-0

ad*(t bc* (t ,f-ýV) (-
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APPENDIX B - PRODUCTS OF WDFs

In this appendix, we will also generalize the results in (81)

and (84), but now for products of two WDFs, to allow for more

general arguments. Again, we begin by considering general two-

dimensional functions as in figure 1. In particular, let

g(t) = WI(t'fa) , h(t) = W2 (tfb) , (B-I)

in (4). Then

G(v) = 4l(vfa) , H(') = §2(vfb) , (B-2)

giving

dt' exp(-i2nvt') Wl(gt'+at,fa) W(Yt'+pt,fb) = exp i2 vtay]) x

x fdv' exp i2nv't(ay-Ap) 0I YV'+ 2V 'fa * Av'- 2Y 'f)(B3

Now, let fa=Af'+af, fb=yf'+Pf, where the boldface constants

are unrelated to their counterparts; that is, A need not equal •,

with the same true of a,p,y. Then Fourier transform (B-3) on f',

to obtain

jjdt'df' exp(-i2nvt'+i2nf'T) Wl(ot'+at,gf'+af) W*(yt'+pt,yf'+pf)=

=expfi2nvt aIi JJ dv'df' exp(+i2nv't(ay-Ap)+i2Trf'T) x

x 1y,+ 2V Pf' af) AV'- 2- 4Yf'+1f (B-4)
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In general, we cannot proceed any further on this double integral

of a product of general two-dimensional functions W I and W 2 *

Now let R1and R2be TCFs; that is,

Rl(t,r) = a(t+½r) b *(t-½T) = R b( tIT)

R2(,)= C(t+½r) d*(t-ý½T) =R cd (t,r) .(B-5)

Then *Iand 42become SCFs:

4 l(v'f) = tab(v'f) = A(f+½v) B*(f-½v)

§ 2 (v'f) = 4cd (vf) - C(f+½v) D*(f-½V) .(B-6)

Substitution in (B-4) yields

f dt'df'exp(-i2rrvt'+i2lif'T) Wb (pt' +ct,ftf'+cf)Wd(ttYfIf

=exp i2nvta q ) Jj'dv'df' exp(+i2nv't(ay-Ap)+i2nfTrf x

)( C* (Yf'+Pf+½Bv1-v/Y) D(yf'+pf-½Av'+4~v/y) . (B-7)

As a first case, let y=§ and yrn§. Then (B-7) becomes
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Jfdt'df'exp(-i2nvl't+i2nf'T) W ab( At'1at,pf'+af) W*d(At'+pt,pf '+pf)

=exp i2nvtaP) jjdv'df' exp(+i2nv'tp~a-p)+i2nf'T) x

x A ( f'+af+½pv'+hv/gJ ) B*A'aAIh/

x C* (AfI+Pf+½AVI~kv/A) D(Af'+Pf-½Av'+hV/P)

= 1exp(+i~ Jvt~ a+ i2nfTg-+-) X

Thus, the very general two-dimensional correlation and Fourier

transform of cross WDFs can be expressed as a product of two

different cross CAFs. For A~tl a-cx½,p---, this result

reduces to (84).

As a second case, let y=-A and y=-A. Then (B-7) 'necomes

J'Jdt'df'exp(-i2nvt'+i'Jtf'T) Waba+t +f W*

-exp i2ntvta-) }J dv'dý' exp(-i2nv'tp(a+p)+i2nf't) x

x A ( ftf+af-½ftv'+kv/A ) B*(ftfI+af+½pvF-4v/p ) X

XC*( ftf+Pf+½tVe+hV/A) D(A' =ýA'hvA
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- 1exp(+i2nvt aý -i2nfTa-lj)X

X Wac (t(a+p)+ t ,f(L+p)+ J Wd t(+p)- -- ,f(a+p)- v , (B-9)

using (61). Thus, the very general two-dimensional convolution

and Fourier transform of cross WDFs can be expressed as a product

of two different cross WDFs. For = a=l, p=i=l, this

result reduces to (81).

For r = 0, v = 0, b(t) = a(t), d(t) = c(t), (B-9) reduces to

ffdtIdf' waa(at+At',af+pf') Wcc(Pt-At,.f-Af') =

= 1011 Ifa(t~~) f(a+p) )1 2 (-0

which is nonnegative for all parameter values and waveforms a(t)

and c(t). This is a generalization of (96).
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APPENDIX C - A GENERALIZED WDF

When a signal is reflected from a moving target, the effect

is to contract (or expand) the time scale of the echo, rather

than cause a frequency shift. This requires us to consider a

more general version of a WDF. To begin, if waveforms

a(t) E a(at) , b(t) s b(at) , a > 0 , (C-I)

then their cross WDF is

1

W(t,f) = - Wa(at,f/a) . (C-2)

Thus, we have need to consider integrals of the form

K= fJdt'df' exp(-i2nvt'+i2nf'r) Wab(t',f') Wcd(t-at',f-f'/a).(C-3)

This form is general enough to accommodate integrand

W ab(At',Of') Wc~d(t-at',f-f'/a) (C-4)

by a change of variable.

To accomplish evaluation of (C-3), we must define a

generalized WDF as

W ab(t'f;p) = fdr exp(-i2nfr) a(t+pr) b*(t-(l-p)T) . (C-5)

Then we have the usual WDF as a special case, namely

Wab(tf;½) = Wab(tlf) . (C-6)
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Also, (C-5) enables us to evaluate the following more general

integral according to

pdt' exp(-i2r ft') a(t') =p1

exp(-i2nftp) Wab(Pt pf;p) ; P = 1--a " (C-7)

Now we are in a position to reconsider integral K defined

above in (C-3):

K = Jjdt'df' exp(-i2nvt'+i2nf'r) jdu exp(-i2nf'u) a(t'+½u) x

b* I *
x b*(t'-½u) Jdv exp[i2n(f-f'/a)v] c (t-at'+½v) d(t-at'-½v). (C-8)

The integral on f' yields 6(t-u-v/a). Integration on u then

yields

K = Jfdt'dv exp(-i2nvt'+i2nfv) a(t'+½r-½v/a) x

b**

x b*(t'-½r+½v/a) c (t-at'+½v) d(t-at'-½v) (C-9)

Now let

x = t'+½T-½v/a , y = t'-½T+½v/a

1 (x+y) v = a(y-x+T) . (C-10)

The Jacobian of this two-dimensional transformation is a, leading

to
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K =a ffdx dy exp[-inv(x+y)+i2nfoa(y-x+t)l x

x a(x) b*(y) c*(t+½ar-ax) d(t-½cxr-ay) =

=a exp(i2ncafe) Jdx expf-i2ir(af+½v)x] a(x) c*(t+½ar-ax) x

x Jdy exp~i2rt(af-hv)y] b*(y) d(t-½aT-cxy)=

a x 2n aft-vt______

(1+a) )+ Wac 1+l'a ' 1~++a 'iv a

* ft-½ar af-½v 1-;-(C 1
"Wbd( 1+ax 'TaW 17(Cli

by use of (C-7). For a = 1, this reduces to alternative form

(83), upon use of (C-6) and (61).
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Alias-Free Smoothed Wigner Distribution
Function for Discrete-Time Samples

Albert H. Nuttall

ABSTRACT

An alias-free Wigner distribution function IWDF), for a time
waveform s(t) limited to total frequency extent F, is available
if the time sampling increment A is less than I/F. Furtl)ý,rmore,
the WDF can be efficiently numerically evaluated via fast Fourier
transform (FFT) procedures if the FFT size N is greater than
2T/A, where T is the effective duration of s(t).

However, in order to suppress the undesired inherent
oscillating interference terms in the WDF, it is necessary to
smooth the WDF, or equivalently, weight the complex ambiguity
function. This smoothing operation cannot be accomplished
without a penalty in terms of sampling increment A and FFT size
N. In particular, if the smearings in the time and frequency
domains of the WDF are 2/B and 2/D, respectively, the new tighter
requirements are

S < DF> N > - + I ,

in order to realize an unaliased smoothed WDF and to be able to
track its variations in time and frequency. The impact of these
more stringent bounds, which depends on the particular waveform
s(t) of interest and the degree of smoothing utilized, must be
anticipated and investigated for each case; if either bound is
violated, an aliased smoothed WDF will result.

Approved for public release; distribution is unlimited.
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ALIAS-FREE SMOOTHED WIGNER DISTRIBUTION

FUNCTION FOR DISCRETE-TIME SAMPLES

INTRODUCTION

The utility of the Wigner distribution function (WDF) for

detailed time-frequency analysis of waveforms has been summarized

very well in a recent article by Cohen (1]; this material will be

assumed to be known by the reader. As for actual numerical

calculation, the problem of obtaining an alias-free WDF and

complex ambiguity function (CAF), from discrete-time samples, was

solved in a recent report by Nuttall [2]. Specifically, an upper

bound on the time sampling increment and a lower bound on the

fast Fourier transform (FFT) size were determined that allowed

for evaluation of the original continuous WDF and CAF at a

discrete set of points with sufficient detail and coverage to

avoid any significant loss of information. Furthermore, a

detailed prescription for the required data processing of the

available discrete-time samples, in terms of FFTs, was given.

However, the presence of large oscillating interference

terms, which are inherent to the WDF, requires that some smoothed

version of the WDF be made available from discrete data. This

problem was addressed recently by Harms [3], and a procedure was

delineated for its realization in terms of FFTs. However, the

additional data processing required for the smoothed WDF cannot

be realized without some extra effort or penalty; in fact, new

more stringent bounds on the sampling increment and FFT sizes
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must be met in order to retain the alias-free character of the

resultant smoothed WDF. These bounds were derived by Nuttall and

furnished to Harms who listed them in (3; section 4 3e

reference 11)].

In this current report, we will present the detail,--'

derivations that lead to these bounds. In the process,

interpretations of the smoothed temporal correlation function

(TCF) and smoothed spectral correlation function (SCF) are

required and furnished. Allowance for a very general form of

ambiguity weighting (multiplication) or Wigner smoothing

(convolution), including tilts in the appropriate time-frequency

planes, is made and accounted for. The specific data processing

and FFT operations are presented in complete detail.

2
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CONTINUOUS TIME-FREQUENCY REPRESENTATIONS

In this section, waveform s(t) is considered to be available

for continuous time t. We will point out some basic properties

of the various time-frequency representations (TFRs) of the

waveform, which will be required later when we address the

discrete-time case; some of this material was given in

[2; especially appendix A].

WAVEFORM CHARACTERISTICS

Complex waveform s(t) has voltage density spectrum

S(f) = f dt exp(-i2nft) s(t) , (1)

where f is cyclic frequency and integrals without limits are

conducted over the range of nonzer:. integrand. It will be

presumted 'hat the waveform is essentially time limited and

frequency limited; that is,

Is(t)I - 0 for Itl > T/2 (2)

and

IS(f)I - 0 for Ifi > F/2 . (3)

Thus, the total time extent of s(t) is T seconds while the total

frequency extent of S(f) is F Hertz. The effective extent of

s(t), say where Is(t)I is within 1/e of its peak, is smaller than

T; similarly, the effective extent of S(f) is smaller than F.

3
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This distinction between the essential (total) extent and the

effective extent is kept below. The time-bandwidth product TF

must be larger than 1 and can be much larger than I for some

waveforms with detailed amplitude- and/or frequency-modulation.

The fact that s(t) is centered at t - 0 results in no loss of

generality because we can delay or advance a given waveform to

this location. Similarly, a centered spectrum S(f) is easily

achieved by frequency shifting. We allow for complex s(t),

thereby accommodating analytic or complex envelope waveforms.

TIME-FREQUENCY REPRESENTATIONS

The temporal correlation function (TCF) of s(t) is defined as

R(t,T) = s(t+½r) s*(t-½T) . (4)

Reference to (2) immediately reveals that R(t,r) is essentially

confined to Iti < T/2, ITI < T. The quantity T is the time delay

or separation variable.

The spectral correlation function (SCF) is the double Fourier

transform of R(t,T) and is given by

(Vf) = dt dT exp(-i2n'jt-i2nfT) R(t,r) =

= S(f+½v) S*(f-h½) . (5)

Use of (3) then demonstrates that f(v,f) is essentially limited

to Jvj < F, Ifi < F/2. The quantity v is the frequency shift or

separation variable.

4
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The Wigner distribution function (WDF) is then given by

either of the following transforms

W(t,f) = { dr exp(-i2nfT) R(t,T) (6a)

j dv exp(+i2nvt) #(v,f) . (6b)

From (6a), we can conclude that W(t,f) is confined to Itl < T/2,

while from (6b), the frequency extent is essentially Ilf < F/2.

Finally, the complex ambiguity function (CAF) is available

from either of the following transforms

X(vr) = J dt exp(-i2nvt) R(t,r) = (7a)

f df exp(+i2nfr) #(v,f) . (7b)

Therefore, the region of essential contribution of X(V,T) is

(vf < F, Irl < T, from (7b) and (7a), respectively.

The extents of all four of these two-dimensional time-

frequency representations are summarized in figure 1. In fact,

for Gaussian waveform s(t) = a exp(-t 2/a2 ), the choices T = 4a

and F = 2/(na), for example, give these exact results in figure

1, at the exp(-4) = .018 level. Horizontal movement in this

figure is accomplished by means of a Fourier transform between

variables t and v; vertical movement utilizes a Fourier transform

relationship between T and f. Relations (6) and (7), along with

their inverse Fourier transforms, constitute the totality of

these one-dimensional transforms.

5
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TCF T CAF T
R(t,r) X(V

t

-T/2 T/2 -

-T -T

f f

WDF SCF
W(t,f) 4(v,f)

F/2 F/2

t v

-T/2 T/2 -F F

-F/2

Figure 1. Extents of the Time-Frequency Representations

6
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GENERALIZED TIME-FREQUENCY REPRESENTATIONS

Since there are four two-dimensional domains of interest in

the TFRs depicted in figure 1, it is necessary to consider the

effects of weighting and smoothing in all of them.

TWO-DIMENSIONAL SMOOTHING OPERATIONS

Consider v,t weighting (or kernel) i(v,r) applied

multiplicatively to CAF X(V,T) to yield modified (weighted) CAF

X(VT) = X(VIT) '(VT) . (8)

The three equivalent descriptors to weighting •(V,T), in the

remaining domains, are given by Fourier transform relations

V(Vf) = dr exp(-i2Rfr) ý'(V,r) , (9)

v(t,r) = dv exp(+i2nvt) i(V,r) , (10)

V(t,f) J dr exp(-i2nfr) v(t,T) =

= f dv exp(+i2nvt) V(v,f) -

J'J dv dT exp(+i2nvt-i2nfr) C(V,r) . (11)

The last function, V(t,f) in (11), will be called the smoothing

function, for reasons to be seen below. The notational

convention adopted here is that a Fourier transform from t to v

is indicated by a tilda, while a Fourier transform from r to f is

indicated by a capital.

7
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GAUSSIAN EXAMPLE

Probably the simplest example of a unimodal two-dimensional

smoothing operation in all four domains is furnished by the

following Gaussian example, where B and D are arbitrary:

ý'(v,r) = exp(-n r 2 /B 2 _ r 2 /D2 ) , (12)

V(v,f) = D exp(-nv 2/B 2 -uD2 2 ) , (13)

v(t,r) - B exp(-RB2 t 2 -_t 2 /D 2 ) , (14)

V(t,f) = BD exp(-nB 2t 2-nD 2f 2) . (15)

The effective areas of these four two-dimensional functions, at

the l/e contour level relative to each peak, are BD, B/D, D/B,

and 1/(BD), respectively. It is seen from (12) that B and D are

the essential (positive) extents of weighting *(v,t) in the v and

r directions, respectively. That is, i(B,0) = f(O,D) = exp(-n)

= .043 << 1 = •'(O,0). Similarly, from (15), 1/B and I/D are the

essential (positive) extents of smoothing function V(t,f) in the

t and f dimensions, respectively. These properties are

illustrated in figure 2, where each contour depicted is at level

exp(-n) = .043, relative to its peak. Shortly, we will

generalize this smoothing function example to allow for tilts in

the v,r and t,f planes, thereby enabling better smoothing

capability to be applied to the WDF, without loss of significant

information.
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tT

D Weighting D exp(-n)
v(t,T) (" .03

t

-1/B 1/B

-D -D

f f

Smoothing
V(t,f) V(V,f)

1/D exp(-n) 1/D
_ = .043t

-I/B :1/B -B B

-l/D -1/D

Figure 2. Two-Dimensional Smoothing Functions
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MODIFIED TIME-FREQUENCY REPRESENTATIONS

The effects of each of the general smoothing functions in

(8) - (11) on the four two-dimensional TFRs (4) - (7) of the

previous section are now investigated; see also [4; appendix F).

The resultant generalized time-frequency representations (GTFRs)

are indicated on the left-hand sides by bold type:

X(V,T) X(V,r) Z(VT) , (16)

fr
I(V,f) s 3 dT exp(-i2nfT) X(V,T) = §(V,f) * V(V,f) , (17)

t
R(t,T) J dv exp(+i2nvt) X(V,T) = R(t,T) 6 v(t,T) , (18)

tf
W(t,f) a 3 di exp(-i2nfr) R(t,r) = W(t,f) S V(t,f) (19)

x

Here, S denotes convolution on x, with all other variables held

fixed; thus, for example, (17) is J df' *(v,f-f') V(V,f').

The interpretations of (16) - (19) are as follows: the CAF is

simply multiplied by weighting 4(v,r); the SCF is smeared in

frequency f according to V(v,f); the TCF is smeared in time t

according to v(t,r); and the WDF is smeared in both t and f

according to smoothing function V(t,f). It is this latter

two-dimensional smoothing (convolution) operation in t,f space

that suppresses or eliminates the undesired oscillating

components that are present in the original WDF, at the expense,

of course, of spreading out localized energy components of the

waveform.

10
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The extents of the GTFRs are sketched in figure 3; these

results are based upon (16) - (19), in combination with figures 1

and 2. Because X(V,T) is the result of multiplication (16), its

extents in v,r are the minima of the two contributing functions.

On the other hand, the f extent of #(v,f) is increased by 1/D,

which is the positive extent of V(v,f) in f. Similarly, the t

extent of R(t,r) is lengthened by 1/B, owing to the smoothing

action of v(t,t). In both of these latter cases, the length of

the untransformed variable (v for #(v,f) and T for R(t,T)) is

unchanged. Finally, W(t,f) is lengthened by 1/B and 1/D in the

t and f dimensions, respectively, owing to the double convolution

with smoothing function V(t,f).

Since the smoothing function V(t,f) in figure 2 has

essentially reached zero by the time Itl = 1/B and IfI = 1/D, the

effective extents in t and f are approximately Itl < 1/(2B) and

Ifi < 1/(2D). That is, V(t,f) is approximately 1/B by l/D wide

in the t,f plane, for an effective area of 1/(BD); see the line

under (15). If this area 1/(BD) is .5 or greater, then we can

expect that smoothed WDF W(t,f) will be everywhere positive

(4; (F-7) - (F-19)].

On the other hand, if effective area l/(BD) is significantly

less than .5, then smoothing function V(t,f) is rather impulsive-

like and little averaging will occur as a result of double

ccnvolution (19). Thus, it appears that BD, at least for the

simple Gaussian example in (12) - (15) and figure 2, should be

chosen of the order of 3 to 4. Then, the effective area of

weighting •(V,r) in (12) and figure 2 is BD, which is of the

11
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inin(T,DJ ijTD

r ~t

2i B

R (t, r)

t

f f

F 1 +~
D 2 D

t V

T + minfF,B1
2B

W(t, f) #Vf

tf .f
W(t,f) $ V(t,f) *(V,f) * (6 f

Figure 3. Generalized Time-Frequency Representations
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order of 3 to 4. This area is significantly smaller than the

effective extent of CAF X(V,T) in figure 1, which covers an area

of the order of FT, which is generally much larger than 1.

Therefore, we can anticipate significant modifications in the

weighted CAF X(v,t), and, hence, in the smoothed WDF W(t,f), in

the majority of the t,f plane; in fact, W(t,f) will have some

regions with negative lobes if BD - 3 to 4. Except to say that

we expect that B < F and D < T, there is little quantitative

connection between these parameters, in general.

TILTED GAUSSIAN EXAMPLE

When waveform s(t) contains some linear frequency modulation,

the simple Gaussian smoothing functions in (12) - (15) and figure

2 are inadequate. The CAF and WDF of s(t) have contours in their

respective planes that are similar to tilted ellipses; see, for

example, [4; pages 35 - 39]. It is then necessary to realize a

weighting function C(V,T) and a smoothing function V(t,f), which

also have the capability of moving their contours to

approximately match those of typical CAFs and WDFs.

A very useful set of smoothing functions is furnished

by the tilted Gaussian mountain, with B and D arbitrary

[4; appendices F and D]:

•(V,T) = exp Y-2-. +T + 2r 1 , (20)

V,f) = D expI-n l-r 2)v2 + D2 f 2 - i2r Df , (21)

13
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v(tt) = B exp[lr[B 2t2 + (1-r2)T2 + i2r Bt , (22)

V(t,f) = 12), exp B2t2 D2 f 2  2r Bt Df) (23)

For r = 0, these reduce to (12) - (15). Plots of weighting

function •(v,r) and smoothing function V(t,f) are displayed in

figure 4 for r < 0; the contours drawn are at the exp(-n) = .043

level relative to the peak value of each function. Dimensionless

tilt parameter r satisfies Irl < 1; also, we define q = (1-r 2 )½.

The smoothing function V(t,f) again has essential extent 2/B

by 2/D in the t,f plane; that is, V(t,f) is substantially zero

for Iti > 1/B or IfI > 1/D. However, the effective area Atf

(inside the 1/e relative contour level) of V(t,f) is now q/(BD),

which can be considerably less than 1/(BD) for Irl near 1, that

is, when q << 1. Weighting function Z(v,v) now has essential

extent 2B/q by 2D/q in the v,r plane; its effective area A V is

BD/q, which is the reciprocal of that for smoothing function

V(t,f): A = 1/A tf Values of Atf of the order of 1/3 to 1/4

are desired for smoothing purposes; then, A - 3 to 4.

Although effective area Atf can be considerably less than

1/(ED), the smearing caused by double convolution (19) still

leads to a smoothed WDF W(t,f) which occupies the same region

indicated in figure 3. The extents of the four GTFRs are exactly

the same as figure 3, except that the limits on v and T are now

miniF,B/ql and min{T,D/qI, respectively; q = (l-r 2 )½ (24)

14
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T/D

q = (1-r22  1/q

Atf = BD/q

1/q 11 1/q

exp(-n) i i-1
level

-I/q

Df

q = ( - 2)%-

A t f -q / (B D ) 
V t f

Bt

-1 q q

exp (-n) •-q
level

Figure 4. Tilted Smoothing Functions
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CHOI-WILLIAMS KERNEL

Another example of the smoothing operations in (8) - (11) is

furnished by [5]:

v(V,T) = exp(-V2 T2 /) , a > 0 , (25)

v(t,T) = K/I ep-ot22 fr # ,(26)

6(t) for r 0

V= Inýa/ll exp(-n2 o2f/2 ) for v ? 0 (27)

6(f) for v = 0

+C0

V(t,f) = 2n f d__v cos(2nvt) exp(-n 2 2 f 2 /V 2 ) = (28a)
0+

+00

= 2n ½ -f ! cos(2nfr) exp(- a 2t 2/V ) , (28b)

0+

provided that t # 0 and f # 0. Integral (28a) is convergent at

v = 0+ only if f # 0 and is convergent at v = +- only if t # 0.

Similarly, (28b) converges at r = 0+ only if t # 0 and converges

at r = +- only if f # 0. Also, (28) yields V(0,f) = - for all

finite f, and V(t,0) = - for all finite t. This smoothing

function V(t,f) in (28) has an integrable singularity all along

both coordinate axes since ý'(0,0) = ff dtdf V(t,f) = 1 is finite.

Probably, V(t,f) has a logarithmic singularity as tf 4 0. Letting

r = Itix in (28b), V(t,f) is seen to be a function only of Itfl.

16
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Because of these singularities, the actual numerical

calculation of the GTFR W(t,f), by means of double convolution

(19), appears very unattractive; rather, the Fourier transform in

(19) is the recommended procedure. The delta functions in the

botton, lines of (26) and (27) mean that

R(t,0) = R(t,0) and #(O,f) = t(0,f) (29)

These results follow directly from (18) and (17), respectively.

Therefore, when computing GTFR R(t,r) by means of the Fourier

transform in (18), the slice for T = 0 need not be done at all,

but rather (29) shoula be employed. That is,

R(t,-r) = { d'j exp(i2nvt) X(',r) exp(-v 22/0 ) for T ? 0 (30)

R(t,O) = Is(t)12 for 2 =

Finally, GTFR W(t,f) is obtained by Fourier transform (19).

Numerous other possibilities for kernel r(v,r) are listed in [1].

PRODUCT KERNELS

The weighting in (25) is an example of a product kernel, that

is, the weighting takes the form

;(V,r) = g(Vr) , g(0) = 1 . (30a)

In order that smoothing function V(t,f) be real for all t,f, it

is necessary that v*(-v,-T) = O(V,r) for all v,r, which in turn

rerquires that g(x) be real for all arguments x. Now define

17
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G(y) = f dx exp(-i2nxy) g(x) (30b)

Then G(-y) = G*(y) for all y.

With the help of these functions and properties, we find that

the rest of the two-dimensional smoothing functions are given by

G 1 f or v 0
V(v,f) = forv=O}(30c)

6(f) for v 0

1 G,()) for T 0

v(tt) = , (30d)

S(t) for r =0

V(t,f) = 2 Re f I exp(i2rtfy) G() . (30e)

0

This last result shows that the smocthing function V(t,f) for a

product kernel is always a function of the product tf, and is

never a function of t or f separately.

The last integral on y converges at y = 0 if G(-) = 0.

Alternatively, it converges at y = 0 for G(m) p 0 if tf # 0. And

the integral converges at y = if tf 9 0.

On the other hand, if tf = 0, then the last integral on y

above is infinite if G(O) ; 0; that is, V(t,f) = for tf = 0,

which corresponds to both coordinate axes t = 0 and f = 0. The

example in (25) is of this nature and corresponds to the special

case of g(x) = exp(-x2/a2) and G(y) = R a exp(-n 2y 2a 2), for

which G(0) = n a # 0.

18
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DISCRETE-TIME CONSIDERATIONS

Up to this point, it has been assumed that s(t) is available

for continuous time t. Now, we address the case where the only

knowledge of s(t) is through samples taken at multiples of time

increment A. The proper treatment of these samples Js(kA)j, in

order to obtain an unaliased WDF W(t,f), was determined in [2];

namely, it was found necessary to take A < 1/F, where bandwidth F

is specified in (3). Also, when an efficient FFT procedure for

evaluating discrete spectral values of S(f) was employed, it was

found necessary to choose FFT size N > 2T/A, where duration T is

specified in (2). The following extension is aimed at obtaining

an unaliased version of smoothed WDF W(t,f) defined in (19). The

reader must be familiar with the procedures presented in [21.

EVALUATION OF MODIFIED CAF X(v,T)

As in [2; (69)], define

A ( exp(-i2nfAk) s(kA) for ±ft < (2A)-1
S(f) = k , (31)

0 otherwise

where the sum on k is over all nonzero summand values. Then

since A < 1/F, we have S(f) = S(f) for all f; furthermore, S(f)

can be computed at any f values of interest, directly from the

available samples Is(kA)1. Therefore, from (16), (7b), and (5),

the modified continuous CAF is
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X(v,r) = 7(v,r) J df exp(i2nfr) f(V,f) = (32a)

S(Vt) J df exp(i2nfr) S(f+½ýv) S*(f-k) . (32b)

Now, in practice, S(f) must be computed at a discrete set of

points; in particular, when we choose frequency increment

af = 1/(NA), where N is arbitrary, we obtain from (31)

n) = A exp(-i2nnk/N) s(k&) for In1 <N (33)
k

There is no need to consider n beyond the ±N/2 range, because the

argument f of '§(f) then covers the ±1/(2A) frequency range, which

is greater than the ±F/2 range of S(f) in (3). We adopt, as our

approximation to desired function (32), the trapezoidal form

(VT) S ýZ'(VT~~~~)-1 E exp i2njt-T N AN A) '§k + 20) i *(A
Xa (v,r) = 9(v,t) N-• 2ex

for all v,r • (34)

Now let infinite impulse train

6b Z 6(x - kb) . (35)

Then, using Af = 1/(NA), (34) can be expressed and developed as

Xa(V'T) = T(Vr) J df exp(i2nfr) *(vf) Af 6A f(f) =

= ý'(V'T) [X(V't) * 6(T - jNA)]

= •(v,r) E X(v,r - 9NA) for all V,r • (36)
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The sum on j in (36) represents sets of aliasing lobes spaced by

multiples of NA on the r axis. From figure 1, since the r extent

of X(VT) is ±T, the first aliasing lobe in (36) for j = 1

extends down to r = NA - T. In order that this lobe not overlap

the desired main lobe, j = 0, we must have T < NA - T, or

N > 2T 1 (37)-a , f NA 2T •(7

This last constraint on Af is consistent with the fact that

the r extents of R(t,r) and X(V,r) are ±T; see figure 1 and

[2; page A-4].

Equation (37) states that the size of the FFT in (33) must be

at least equal to twice the number of waveform samples taken at

increment A in duration T of s(t). When this selection is made,

(36) and (16) yield

Xa(vT) = Z(v,r) X(v,T) - X(v,T) for IT! < NA/2 , all v . (38)

That is, approximate GTFR Xa(VT), defined by the sum in (34), is

equal to the desired GTFR X(V,r) within a strip in the v,r plane.

Now, in order to convert (34) to a form where we can use the

spectrum calculations (33), we limit v to the values 2n/(NA):

(2n = , 1 exp -i2n4,) g(+n) -*(j

for f -f < , all n . (39)

We have dropped the subscript a on X(v,t), by virtue of (38).

The v increment in (39) is A = 2/(NA), which is less than lUT

21



TR 8785

according to (37); this increment is fine enough to track

variations of X(v,r) in v, since the t extent of the TFRs in

figure 2 is ±T/2.

Finally, in order to manipulate (39) into an FFT form, we

restrict the t-value calculations to the set

x[2nmA) = ,ma I-• exp(i2rjm/N) S( ) N -S(n)

for Iml <N all n (40)

Actually, since the IlI extent of X(v,r) is min[F,B/qI according

to (24), we only need to consider

21n' < min[F,B/qI , that is, Inl < 1 min[FA,BA/q. (40a)

But, since we always have FA < 1, then In! < N/2 will always

suffice. Thus, m and n in (40) can be limited to ±N/2. Also,

when ljinl in (40) exceeds N/2, use S = 0 in (40), according to

(31) and (33).

So far, we have shown that if A < 1/F and N > 2T/A, then an

unaliased version of GTFR X(V,r) is available and that this

version can be efficiently computed by (40). These conditions

are the same as those derived in [2; appendix D). The multipli-

cation of X(V,T) by weighting C(v,r) in (16) or (32) to obtain

X(V,r) has no effect on aliasing in the v,T plane; this is an

obvious result in retrospect. However, since GTFR X(vft) in (38)

is the product of X(vjr) and ;(v,r), it varies faster with v and

r and must be sampled more finely. This effect is now addressed.
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The r increment in (40) is A -M. But since the f extent,

Ef, of GTFR #(v,f) in (32a), according to figure 3, is ±Ef, where

Ef = F/2 + l/D, we must take AT < 1/( 2 Ef), that is,

1 2 (11 F (41)
F + 2

Also, the v increment in (40) is AV 2/(NA). But since the

t extent, Et, of GTFR R(t,t), according to figure 3, is ±Et,

where Et = T/2 + 1/B, we must take a < 1/(2Et), that is,

N > -2 + 4 a (42)

These two more-stringent conditions in (41) and (42) are

consistent with the observation, above, that X(V,T) in (38) is

the product cf two functions. From this point on, we presume

that (41) anq (42) are satisfied.
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EVALUATION OF MODIFIED SCF #(v,f)

The modified SCF #(v,f) is given by (17) as the Fourier

transform of X(v,r). Since X(v,T) will only be available at

increment A. = A, as given by (40), we adopt as our approximation

the trapezoidal form

a (V,f) a a Z exp(-i2nfmA) X(v,mA) =
m

= f dt exp(-i2nfr) X(V,T) A 6A(T) =

f
=*(vf) 0 6  M- for all vf (43)

m

The first aliasing lobe for m = 1 is centered at f - 1/A.

The f extent of GTFR *(v,f) is ±(F/2 + I/D), as seen in

figure 3. In order that aliasing be insignificant in (43), we

must have F/2 + I/D < 1/(2A); that is, time sampling increment A

must satisfy constraint (41), as before. This is tighter than

the original constraint a < 1/F, which was sufficient for

reconstruction of s(t) and the unmodified TFRs such as X(v,t) and

W(t,f). If we anticipate doing some smoothing of the TFRs,

sampling with a time increment A satisfying (41) must be

undertaken in order to avoid aliasing of #(v,f) in f. In this

case, we have

a (v,f) = #(v,f) for Ifj < 1/(24) , all v (44)
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As for the actual evaluation of GTFR #(v,r), we use (43) and

(44) to get

A= exp(-i2njm/N) X(v,mA) for Iji ( , all v . (45)
m

Finally, in order to use the available quantities in (40), we

restrict the calculation to the values

,%,i)= A exp(-i2njm/N) 2n
m

for Inl < N lj < N (46)
22 *(6

This procedure in (46) yields unaliased samples of the GTFR

f(v,r) when (41) is satisfied. It utilizes FFT operations,

applied to the GTFR X(V,r), which is available by the FFT

prescription in (40). The ranges of integers n and j in (46)

are sufficient to cover the ranges ±1/A and ±1/(2A) in v and f,

respectively. But since 1/A > F + 2/D by (41), the ranges

±(F + 2/D) and ±(F/2 + 1/D) in v and f, respectively, are

adequate to fully cover the extent of GTFR #(v,f); see figure 3.

The frequency increment 6f = 1/(NA) in (46) is fine enough to

track variations of #(v,f) in f, since 1/(NA) < 1/(2T) according

to (42), while the r extent of the GTFRs in figure 3 is always

less than ±T.

Also, the increment AV = 2/(NA) in (46) is fine enough to

track variations of *(v,f) in v, since 2/(NA) < 1/(T + 2/B)

according to (42), while the t extent of the GTFRs in figure 3 is

always less than ±(T/2 + 1/B).
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EVALUATION OF MODIFIED WDF W(tf)

The modified WDF W(t,f) was given by (19) as the Fourier

transform of R(t,r). However, in analogy to the two alternatives

in (6), there is also the form

W(t,f) = dv exp(i2nvt) t(v,f) . (47)

Since f(v,f) will only be available at increment AV = 2/(NA), as

given by (46), we utilize the following trapezoidal approximation

to (47):

a(tf) a expNi2nt #(2,f)=

= f dv exp(i2nvt) #(v,f) A 6A (v) =

W(t,f) S 6 N•/2(t) = L W t - n-Nf for all t,f . (48)
n

The first aliasing lobe for n = 1 is centered at t = N6/2.

The t extent of GTFR W(t,f) is t(T/2 + 1/B), as seen in

figure 3. In order that aliasing in t be insignificant in (48),

we must have

T + 1 < E ; (49)
I B <4'

that is, the FFT size N must satisfy (42), as before. This is

more stringent than original constraint (37), which sufficed for

the unmodified TFRs. Again, an unaliased smoothed WDF can only
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be achieved if sampling increment a is smaller and if the FFT

size N is larger, the exact amounts depending on the degree of

smoothing desired; see figure 2 in this regard. when (42) is

satisfied, we have from (48)

Wa(t,f) = W(t,f) for Itl < NA/4 , all f . (50)

The combination of (50), (48), and (46) now yields smoothed

WDF samples

W(t ) = .exp i2nt ',(,2n '

n
N NANAi NAN

for Itl <11-", < 2 (51)

Finally, to convert (51) to an FFT, we restrict the t values to

W(M2'NA] = 2 E exp(i2nnm/N) #ZNNi)

n
2NA N NAN

for Iml <Ijl < N (52)

Again, N-point FFTs will realize the desired unalia.ied smoothed

WDF W(t,f), provided that (41) and (42) are satisfied. The

ranges of integers m and j in (52) cover interval ±NA/4 in t4 and

bandwidth ±I/(26) in f. But since NA/4 > T/2 + 1/B and

1/(2A) > F/2 + l/D according to (42) and (41), respectively,

these t and f ranges cover the full extent of smoothed WDF W(t,f)

in figure 3.

The time increment At = A/2 in (52) is fine enough to track

W(t,f) in t, since A/2 < 1/(2F) according to (41), while the v
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extent of the GTFRs in figure 3 is always less than ±F. Also,

the frequency increment Af = l/(NA) in (52) is fine enough to

track W(t,f) in f, since 1/(NA) < 1/(2T) according to (42), while

the r extent of the GTFRs in figure 3 is always less than ±T.

Also, see [2; appendix A].

If 4(2n/(NA),f) in the top line of (48) were available for

all f, the approximation Wa (t,f) would be aliased only in t, with

period NA/2. However, the SCF available is * a(v,f), given by the

top line of (43), and it is seen to be aliased in f, with period

1/A. The combination of these properties results in approximate

WDF Wa(t,f) being aliased in both t and f, with periods NA/2 and

1/A, respectively. The limitations on m and j in final result

(52) keep t and f within the fundamental aliasing interval.

However, (52) contains all the infinite number of overlapping

aliasing lobes centered at t = nNA/2 and f = k/A for n,k # 0,0.

It is only the satisfaction of (41) and (42) that keeps all these

overlapping contributions small in the fundamental interval

centered at 0,0.
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SUMMARY

Calculation of the modified time-frequency representations,

X(V,T), f(vf), and W(t,f), at selected discrete points in the

various two-dimensional planes, can be accomplished without

aliasing and without losing any information, provided that the

time sampling increment A satisfies A < 1/(F + 2/D) and that the

FFT size N satisfies N > 2T/A + 4/(BA). Also, it is shown in

appendix A that calculation of an unaliased modified TCF R(t,T)

requires that these same constraints be satisfied.

If integrals of products of WDFs or CAFs are of interest (61,

the rules on sampling rate and FFT size given here should suffice

to get accurate numerical results. The aliasing lobes have been

kept out of the regions of interest, thereby minimizing possible

interference effects, and the information in the functions has

been retained.

A summary of the operations that must be undertaken on

available time data samples {s(kA)j follows: compute the

spectral quantities S in (33); use these in (40) to get samples

of the weighted CAF X; employ (46) to evaluate the modified SCF

#; and use (52) to determine the smoothed WDF W. All of these

expressions use N-point FFTs.

Since the number of substantial samples of s(t) is T/A

according to (2), the FFT size N in (33) is at least twice this

large; see (37) and (42). Thus, approximately half of the N

array locations input to (33) will contain rather small

contributions. If s(t) is sampled well beyond t = ±T/2, say for
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Itj > T, these very small values can be "collapsed" into the

available N bins with no loss of accuracy; see [2; page 5]. A

program that incorporates all these features above is contained

in appendix B. The detailed locations of the aliasing lobes of

this procedure are investigated in appendix C.

Candidates for weighting V(v,r) to be used in (40) include

(12) or (20) or (25). The selection of values for parameters

B, D, r, and u will have to be made by inspection of CAF X(V,T),

which is the factor multiplying weighting Q(v,r) in (40). A

check should then be made of (41) and (42) to ensure that

aliasing is not significant.
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APPENDIX A. EVALUATION OF MODIFIED TCF R(t,r)

The modified TCF R(t,r) is given by (18) as the Fourier

transform on v of X(v,r). Since X(v,r) will only be available at

increment A. = 2/(NA), as given by (40), we adopt as our

approximation the trapezoidal form

2 (.2nl (2n)
Ra (tr) S NZ exp i 2 n-t) X-,T = (A-i)

n

= dv exp(i2nvt) X(v,r) a 6A (v) =

t
R(t,T)@ 6NA/2(t) H iRt - nNrj for all t,T . (A-2)

n

The first aliasing lobe for n = 1 is centered at t = NA/2.

The t extent of GTFR R(t,t) is ±(T/2 + 1/B), as seen in

figure 3. In order that aliasing be insignificant in (A-2), we

must have T/2 + I/B < NA/4; that is, FFT size N must satisfy

constr-int (42), as before. In this case, we have from (A-2)

Ra (t,r) = R(t,t) for Itt < M , all T (A-3)

In particular, from (A-I) and (A-3), we get

-(2,r=) 2 T exp(i2nkn/N) X(2-, for Ik <N all T

n
(A-4)

Finally, in order to use the available quantities in (40), we

restrict the calculations to values
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R (km) = j Z exp(i2nkn/N) X(n,mA) for Ikl < Imi <
n

(A-5)

This procedure in (A-5) yields unaliased samples of the GTFR

R(t,r) when (42) is satisfied. It utilizes FFT operations,

applied to the GTFR X(v,T) which is available by the FFT

prescription in (40). The ranges of integers k and m in (A-5)

are sufficient to cover the ranges ±NA/4 and ±NA/2 in t and T,

respectively. But since NA/2 > T + 2/B by (42), the ranges

±(T/2 + 1/B) and ±(T + 2/B) in t and t, respectively, are

adequate to fully cover the extent of GTFR R(t,r); see figure 3.

The time increment At = 6/2 in (A-5) is fine enough to track

R(t,r) in t, since A/2 < 1/(2F) by (41), while the v extent of

the GTFRs in figure 3 is always less than ±F. Similarly,

increment AT = A in (A-5) is fine enough to track R(t,T) in r,

since A < 1/(F + 2/D) by (41), while the f extent of the GTFRs in

figure 3 is always less than ±(F/2 + 1/D).
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APPENDIX B. PROGRAM FOR SMOOTHED WDF W(t,f)

In this appendix, a program for the procedure given in (33),

(40), (46), and (52) is presented in BASIC for the Hewlett

Packard 9000 computer. However, in order to minimize

computational effort and storage, some additional shortcuts have

been employed that take advantage of the symmetry properties of

the various two-dimensional functions encountered here.

We begin by observing from (5) that the SCF satisfies

4(-v,f) = • (,f) .(B-i)

Therefore, we can confine the calculation of f(v,f) to v 2 0,

all f. Then, from (7b), the CAF satisfies a conjugate symmetry

through the origin:

X(-V,-T) = X (V,r) , (B-2)

which means that X(V,r) need be computed only for v k 0, all r.

We now choose weighting 4(v,r) in (8) to possess this same

origin symmetry property as in (B-2), namely

•(-V,-T) = v (V,r) ; (B-3)

then it follows that the modified CAF in (8) also satisfies

X(-V,-T) = X (V,r) . (B-4)

Again, this allows us to confine the calculation of X(v,r) to

V k 0, all T.

The modified SCF f(v,f) is given by Fourier transform (17).
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Use of (B-4) reveals that f(v,f) satisfies

#(-v,f) = I (V,f) , (B-5)

which allows us to compute t(v,f) only for v Z 0, all f. Then

the smoothed WDF, given by (47), can be manipulated as follows:

+W +W

W(t,f) = { dv exp(i2nvt) #(v,f) = 2 Re f dv exp(i2rvt) #(v,f) =

-0 0

+0

= 2 Re { dv exp(-i2nvt) #*(v,f) (B-6)

0

This calculation of smoothed WDF W(t,f) via a forward FFT must be

done for all t,f, but it utilizes #(v,f) only for v k 0.

If needed, calculation of modified TCF R(t,r) can be obtained

from (18) according to

+0

R(t,r) = { dv exp(i2nvt) X(v,r) =

+0 +D

f dv exp(i2nvt) X(V,T) + { dv exp(-i2nvt) X*(v,-r) . (B-7)
0 0

This calculation need only be done for r k 0, all t, since the

modified TCF satisfies

R(t,-r) = R (t,r) (B-8)

which follows fror (B-7) and (B-4).
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In the program listed below, the user must input time samp-

ling increment a and FFT size N in lines 20 and 30. The complex

data samples js(kA)j are entered via SUB Data in lines 1210 -

1360, which requires time limits K1 A and K2 A that guarantee

small values of s(t) outside this time interval. The particular

waveform s(t) of interest is entered in SUB S in lines 1380 -

1470 and would have to be replaced by the user for his particular

application. The complex waveform s(t) should be centered at

t = 0 and f = 0; but even if this is not done, an aliased version

of W(t,f) always appears in the fundamental t,f interval centered

at the origin, as discussed in the sequel to (52) and appendix C.

The particular example given here has been shifted by to and fof

for purposes of obtaining a less symmetric example to test the

routines for accuracy. Also, linear frequency modulation has

been included in this example in terms of parameter Alo, a0 ; see

[4; (84), (91), (93)), where we have also taken a° = 1, Go = 1.

Tilted Gaussian weighting Z(v,T) in (20) and figure 4 has

been incorporated in function routine DEF FNVt in lines

1490 - 1570; the user must input choices for D, B, r in lines

1500 - 1520. The result of smoothing operation (19), namely the

double convolution of WDF W(t,f) with smoothing function V(t,f)

in (23), can be computed in closed form for the waveform s(t) in

SUB S and the weighting •(V,T) in DEF FNVt. This result is

programmed in DEF FNWdfsmooth and is based upon [4; page J-1].

Subroutine SUB Fftl4 in lines 1930 - 2860 can compute an

N-point FFT for values of N up to 16384. However, due to storage

demands in the main program, in particular line 120 for the two-
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dimensional arrays Re and Im, the maximum value of N that can be

accommodated in our particular computer configuration is N = 128.

However, another facility with larger storage capabilities can

handle N values larger than 128 if lines 110 - 120 are increased.

It should be noted that this procedure in SUB Fftl4 uses zero

subscripts, as encountered directly in the definition of the FFT.

An error check has been performed on the entire procedure

programmed here; it is indicated in the main program by the

indented lines. It is included so that a user can check his

program for accuracy. In an actual application to given data,

the indented lines in the main program should be deleted along

with SUB S and DEF FNWdfsmooth; also, SUB Data must be modified

or replaced, to suit the user.

The results of this error check are listed below for several

choices of fundamental parameters N and A. It is seen that

extreme accuracy can be achieved for the larger FFT sizes N, if

increment A is chosen appropriately.

N A maximum error in smoothed WDF W(t,f)
(tO=.11, f =.17) (to=01 fo=0)

8 .90 .25 .15
16 .65 .016 .010
32 .45 .14E-3 .77E-4
64 .35 .77E-9 .36E-10

128 .25 .89E-15 .89E-15

The best choices for A in the latter case, where to = 0 and

fo = 0, are 1, .72, .51, .36, .25, respectively; the

corresponding maximum errors are .078, .32E-2, .41E-5, .86E-11,

.89E-15, with execution times .12, .45, 1.9, 7.8, 33.3 seconds.
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10 TR 8785, APPENDIX B, ALIAS-FREE SMOOTHED WDF; HALF STOPAGE
20 Delta=.35 ! TIME SAMPLING INCREMENT; k311)
:30 1-1=64 ! FFT SIZE <= 128
40 PRINT "Delta =";Delta;" N =";N
50 N1 =I-I- 1
60 N2=N"2
70 N3=2-1
30 DOUBLE NN1,H2, JHs, isKs, IlJrJm INTEGERS, NOT DOUBLE PREC.
90 REDIM Cos•(0:N/4),Sr-(@: I),Si (0: N1 ),Sbr(-t2:N2),Sbi(-N2:H2.

100 REDIM X(0:NI),Y(8:NI),Re(0:NJ,8:HI), Im(e:NJe:NI)
110 DIM Cos(32),Sr(128),Si(128),Sbr(128),Sbi(128)
120 DIM X(128),Y(128),Re(63,127),Im(63,127) 64 X 128
130 A=2.*Pl/fN
140 FOR N.=0 TO N/4
150 Cos."Ns)=COS(A*Ns) ! QUARTER-COSINE TABLE
160 NES,,T Ns
170 CALL Data(N,Delta,Sr(*),Si(*)) 1 TIME DATA
ISO CALL Fft14(NCos(*),Sr(*),Si(*)) SPECTRUM
190 FOR Ns=-N2 TO 142

200 Ks=Ns MODULO N
210 Sbr(Ns)=Sr(Ks) S(f); (31)
220 Sbi (Ns)=Si (Ks) NEEDS Delta; (33)
230 NEXT Ns
240 Dnu=2./(N*Delta) ! nu INCREMEHT IN CAF; (40)
250 Dtau=Del'ta tau INCREMENT IN CAF; (40)
260 FOR Ns=0 TO N3 fnu >= 0; APPENDIX B
270 MAT X=(O. )
280 MAT Y=(8.)
290 Jn=H2-N.
300 FOR Js=-Jn TO Jn
310 Ks=Js+ts
320 Ms=Js-14s
330 Pr=Sbr,(Ks)
340 Pi=Sbi(Ks)
350 Mr-=Sbr(Ms)
:360 Mi=Sbi(Ms)
370 Jm=Js MODULO N *
380 X(Jm)=Pr*Mr+Pi*Mi ! S( +nu,'2) S (f-nu!2); (40)
390 Y(Jm)=-(Pi*Mr-Pr*M'i) CONJUGATE THE FFT INIPUT
400 NEXT Js
410 CALL Fft14(N,Cos(*),X(*),Y(*)) ! INTO nutau DOMAIN
420 Iu=Driu*Ns ! nu IN WEIGHTING vn, ; (40)
430 FOR Ms=-N2 TO N3
440 Jm=Ms MODULO N
450 Tau.4=Dtau*Ms I tau IN WEIGHTING vk
460 Vt=FNVt(Nu,Tau) WEIGHTING v-
470 Pe(Ns,Jm)=X(Jm)*Vt
480 Im(Ns,Jm)=-Y(Jm)*Vt ! CONJUGATE THE FFT OUTPUT
490 NEXT Ms ! WEIGHTED COMPLEX AMBIGUITY FN.
500 NIEXT Hs I NEEDS Delta/Il; (40)
510 FOP -s=0 TO H3
520 FOR Ms=O TO Nl
530 X(Ms)=ReC(.4s,Ms)
540 Y(Ms)=Im(Ils,Ms)
550 NEXT Ms
560 CALL Fft14(fi,Cos*),X(*),Y(*)) I INTO nu,f DOMAIN
570 FOP Js=e TO NI
5e0 Pe(ti6, ls)=X(Js)
590 !m(Ns,Js)=Y(Js)
600 NEXT Js ' MODIFIED SPECTRAL CORRELATION FN.
610 NEXT Ns I NEEDS Delta*Delta/N; (46)
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620 FOR Js=O TO 141
630 X(O)=Re(O,Js)

4 Y(g)=-Im(0, .is)

650 FOR Ns=1 TO N3
6IS0 V (HN ) =Re ( Ns_, Js ),2.
670 YWNs),=-Ir(Nz.,Js)*2. CONJ.UGATE THE FFT I11PUT
6.80 NEXT Ns
6ý90 FOR Ns=N2 TO NI
700 Xtls)=Y(Ns)=O. ZERO MODIFIED SCF FOP nu . 0
710 NEXT Ns
7 2_ 0 CALL Ff't14(N,Cos(*),X(*),Y(*)) ! INTO t,f DOMAIN

30 FOR P1s:0 TO N3
740 Re(Ms, Ys)=,X(Ms) SMOOTHED WDF FOR t 0
750 14EXT Ms
760 FOR Ms=N2 TO Ni
770 In(Ms-N2,JE)=X(M.) SMOOTHED WDF FOP t < 0
780 NEN'T 1.1 ARRAY 'f(*) IS DISCA:RDED; APP. B

790 NEXT Js s NEEDS 2.*Delta.'(t4*H); (52)
800 A=2, *DeI t ./ l )
810 MAT Re=Re*(A) I ONE FINAL SCALING
820 MAT Ir=Im*(A) I GIVES SMOOTHED IDF
8:30 Big=o.
840 t =DeIt. a*.5 5 t INCREMENT IN SMOOTHED WDF; '.52)
5170 Df=1f(H*Dlta) " INCREMENT IN SMOOTHED HDF; (52).
860 GINIT
870 PLOTTER IS "GRAPHICS"
880 GRAPHICS ON
890 WINDOW -N2,N2,-N2,N2
900 LINE TYPE 3
910 MOVE -12,0
920 DRAW N2,0
930 MOVE 0,-N2
940 DRAW 0,N2
950 PEIIUP
960 LINE TYPE 1
970 FOR Js=-N2 TO N-
980 Jn=Js MODULO N
990 Fs=Df*Js I f IN SMOOTHED WIGNER DIST. FN.

1000 FOR Ms=-H2 TO -1
1010 Wdfsr=Im(Ms+N2,Jn) I SMOOTHED WDF FOP t < 0
1c20 Ts=Dt*Ms t IN SMOOTHED WIGNEP DIST. FN.
1030 Err-or=Wdf sm-FN-ll~ldf'smooth(Ts, Fs)
1040 Big=MAX(Big,ABS(Error))
1050 PLOT Ms,Js+Wdfssm
1060 N1EXT H_
1070 FOR Ms=0 TO N3
10'.S0 Wdfs.rie=Pe(Hs ,Jn) I SMOOTHED WDF FOR t >= 0
1090 Ts=Dt*Ms
1100 Err or-=Hdf sm-FNWdf smooth( Ts, Fs)
1110 Big=MAX(Big,ABS(Error))
1120 PLOT Ms, Js+Wdfsrn
11?.0 NEXT Ms
1140 FENUP
1150 NEXT is
I It0 PPINiT "M1AIMUM ERROR =",-Big MAXIMUM EPROP IN SMOOTHED WDF
I1170 PPIhT
1160 PAUSE
I 130 END
1200
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1210 SUB D at a< DOUBLE N, REAL Delta, Sr ( *)S i.))
1220 tBDOUBLE K_,Js,KI,K12 I NTEGERS, NOT DOUB.LE PPECIS-SI fl4
12- -30 MAT St=(0.)
1240 MRT Si=(0.)
1250 K1=-40 USER MUST
1260 K2=40 ! INPUT LIMITS
1270 FOR Ks=KIl TO K2
1280 Js=Ks MODIULO N COLLAPSING
1290 Ts=DeltaKs TIME t
1300 CALL S( Ts,Sr,S i COMPLEX DATA WAVEFORM
1310 Sr( .s)=Sr(.Js)+Sr. DATA IS STORED I.N 0:11
1320 Si(Js)=Si(•s)+Si
1:3:-3 IF 1's=K1.I THEN PRINT "WIAVEFORr EDGE VALUES: ;$S0P(Sr*Sr.+Si*"j,*)
1'340 IF Ks=K',2 THEN PRINT SQR(Sr*Sr+Si*Si)
1350 NEXT Ks
1360 SUBEND
1370
1380 SUB S(Ts,Sr,Si) WA%)EFOPM srt); C:ENTER AT t=o, ( =O
1:390 Aio=.92 LI1NEAR FM
1400 To=.1I ' CENTERED AT t=to AtiD
1410 Fo=.17 f=fo FOR THIS EXAMPLE
1420 A=Ts-To
14:30 B=2.*PI*Fo*Ts+.5*Alo*A*A
1440 E=EXP(-.5*A*A)
1450 Srt=E*COS(B) ! COMPLEX
1460 Si-E*SIN(B) WAVEFORM
1470 SUBEND
1480
1490 DEF FWVt(-lu,Tau) W EIGHTIIt IN G ru. t au
1500 D=3.5 tau EXTENT, SECONDS
1510 B=1.1 I nu EXTENT, HERTZ
1520 Ps=-.21 ! TILT, Irl < I
1530 V=Nu./B
1540 T=TauFD
1550 A=V*V+T*T+2.*Rs*V*T
1560 RETURN EXP(-PI*A) ! (20) AND FIGURE 4
1570 FNEND
1580
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15 90 DEF Ft1WJdf'--ruotth( Ts, Fs) !SMOOTHED WDF; TP 8225, pag J-1
1600 Alo=.92 1LINEAR FM; SEE SUP S
116 10 To=. I1 CENTERED AT t~to AND
I1--2 0 Fo=. 17 C=f~o FOP THIS EXAMiPLE
16-30 D1=3. 5 9tau EXTENT, SECONDS
16-40 B=1.1 gnu EXTENT, HERTZ
16.50 Rs=-. 2 1 TILT, Irl < 1
166,0 Q2=I.-Rs*Rz
1670 A2=I.+Alo*Alo
1660 As=2.*A2
1690 Bs=S.*PI*PI
1708 Rho=-Alo/.SCIR(A2)
11-10 C:s=2'.*PI*B*B--Q2
17210 Ds=2.*PI*D*D/02
1730e L~arnRs
1740 Ri = I.-Rhc,*Rho
1750 L1=l.-Larn*Lam
1760 Ab=As*Bs
17-70 C,d=Cs*Ds
1780 Sa=SQR(Ab)
1790 Sc=SQR(Cd)
1800 RA1Ab*Rl
1s1e Cl=Cd*LI
1620l Dc=AI+CI+As*Ds+Bs*Cs-2.*Sa*Sc*Rho*Lam
1830 NI=AI*Cs+AS*CI
1840 t-12=A1*Ds+Bs*C1
1850 N3=Ab*Sc*Larn*R14Sa*Cd*Rho*L1
16.60 Fac=4.*PI*B*D*SQR(PI/(Q2*Dc))
1870 Xs=Ts-To
1880 Ys=Fs-Fo
1890 NiurmNl*Xs*Xs+N2*Ys*Ys+2.*H3*Xs*Ys
1900 RETURN Fac*EXP(-.5*N.um/Dc)
1910 FNEND
1920
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19:30 SUB Ff'tI4EDOUBLE N,REAL Cos(*),X(*),Y(*)) -=2-14=16384: 0 SUPS
1940 'DOUBLE Log2n,NI,H2,N1:3,N4,J,K ! INTEGERS 2-31 2,14-1,483,648
1950 DOUBLE 11,I2, 13,14,15, I6,17,18,19,110,111,112,113,114,L(0:13)
1960 IF N=I THEN SUBEXIT
1970 IF tH.2 THEN 2050
1980 R=X(O)+X(I>
1990 (1)=X ) -X (1I
2000 V<O)=A
2010 A=Y(O)+Y(I)
2020 Y(I>=Y(o)-Y<I)
20:3 Y<O>=A
2040 SUBEXIT
2050 R=LOG(N)/iLOG(2.)
2060 Log2r=A
2070 IF ABS(A-Log2n)<l.E-8 THEN 2100
2080 PRINT "N ="; g ;"IS NOT A PONER OF 2; DISALLOWED."
2090 PAUSE
2100 NI =N.-/4
2110 N2=N11+1
2120 143=112+1
2130 H44=N3+N I
2140 FOR 11=1 TO Log2n
2150 12=2-(Log2n-11)
2160 13=2*12
2170 14=4/13
2180 FOR 15=1 TO 12
2190 16=(15-1)*14+1
2200 IF 16<=N2 THEN 2240
2210 Al=-Cos(44-16-1)
2220 A2=-Cos.I6-NI-1)
2230 GOTO 2260
2240 81=Cos(I6-1)
2250 R2=-Cos(03-16-1)
2260 FOR 17=0 TO N-13 STEP 13
2270 18=17+15-1
2280 19=18+12
2290 T1=X(18)

2380 T2=X(I9)
2310 T3=Y(18)
2l20 T4=Y(19)
2330 A3=TI-T2
2340 A4=T3-T4

'250 X(18)=TI+T2
2360 '(I8)=T3+T4
2 ',"< I9)=A1*A.3-A2*84
'310 YV19)=AI*A4+R2*A3

•39 0 NEXT 17
4 tNEXT 15

2410 HIEXT II
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2428 Il=Log2n+l
2438 FOR 12=1 TO 14
2440 L(12-1)=l
2450 IF 12>Log2n THEN 2478
2460 L(12-1)=2"(I1-I2>
2470 NEXT 12
2480 K=0
2490 FOR 11=1 TO L(13)
2500 FOR 12=11 TO L(12) STEP L(13)
2510 FOR 13=12 TO L(11) STEP L(12)
2520 FOR 14=13 TO L(10) STEP L(11)
2530 FOR 15=14 TO L(9) STEP L(10)
2540 FOR 16=15 TO L(8) STEP L(9)
2550 FOR 17=16 TO L(7) STEP L(8)
2560 FOR 18=17 TO L(6) STEP L(7)
2570 FOR 19=18 TO L(5) STEP L(6)
2580 FOR 110=19 TO L(4) STEP L(5)
259' FOR 111=110 TO L(3) STEP L<4)
260V; FOR 112=111 TO L(2) STEP L(3)
2610 FOR 113=112 TO L(I) STEP L(2)
2620 FOR 114=113 TO L(8) STEP L(1)
2630 J=114-1
2648 IF K>J THEN 2718
2658 A=X(K)
2660 e, (K)=X(J)
2670 X(J)=A
2680 A=Y(K)
2690 Y(K)=Y(J)
2700 Y(J)=A
2710 K=K+I
2720 NEXT 114
273 -NEXT 113
2740 NEXT 112
2750 NEXT III
2760 NEXT 110
2778 NEXT 19
2780 NEXT 18
2790 NEXT 17
2800 NEXT 16
2810 NEXT 15
2820 N4EXT 14
2830 NEXT 13
2840 NEXT 12
28 50 NEXT II
2868 SUBEND
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APPENDIX C. GENERAL ALIASING PROPERTIES

No finite-duration time function can be exactly bandlimited

in frequency. Therefore, all the properties presented above are

approximations, their quality depending on the detailed temporal

and spectral behaviors on the tails of waveform s(t) and spectrum

S(f), respectively. In this appendix, we will derive the exact

aliasing properties of the method listed in appendix B, for

arbitrary values of sampling increment 6 and FFT size N. In

fact, we will not even refer to a duration T or band F, nor will

we limit time function s(t) and spectrum S(f) to be centered at

t - 0 and f = 0, respectively. The following results will

explain the aliasing properties of this numerical procedure.

We begin with (1), namely

S(f) = f dt exp(-i2nft) s(t) for all f . (C-I)

This spectrum can have arbitrary extent and lie anywhere on the f

scale. For time sampling of s(t) at increment A, define

S(f) a A• exp(-i2nf~k) s(kA) for all f , (C-2)
k

where sums without limits are over - This function has

period 1/A in f and can be written as convolution

9(f) =S(f) a 6 ~f (C-3)
n

Thus, no matter where S(f) is located, a replica of it appears in

S(f) somewhere in the fundamental ±1/(26) frequency range
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centered at f = 0. Of course, if the frequency extent of S(f)

exceeds 1/A, there will be overlapping spectral components in

S(f) which will cause distortion; these effects are included in

the following analysis.

As in (31), define bandlimited spectrum

S(f) aS(f) rect(4f) for all f , (C-4)

where rect(x) = 1 for lxi < 1/2 and zero otherwise. This

function S(f) has limited extent in frequency, namely, it is

nonzero only for Ijf < 1/(28). Therefore, using (C-2), we can

limit its calculation to the values

NA S )= E• exp(-i2nnk/N) s(kA) for hi< (N
NA ~k2

The increment in frequency here is Af = 1/(NA), where N is an

arbitrary integer, but generally large.

Guided by continuous forms (7b) and (5) for the CAF, we

define here approximate CAF

X(v,,) = Af exp(i2njAfT) S(jAf + 2) SVjAf - for all vi

(C-6)

Since the product of S functions in (C-6) is nonzero only for

IjAf ± v/21 < 1/(26), the infinite sum in (C-6) can be limited to

Ijj < N/2. Also, x(V,T) is limited to lvi < 1/A and has period

l/1f = NA in T. In fact, we can develop (C-6) as
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x(v,r) = J df exp(i2rfr) Sý f + 1) S* f - ) 1 (f) =

X Xa(V,T) 6NA('r) = . Xa(v,t - nNL) , (C-7)
n

where Xa(VT) is the CAF of S(f). Thus, again, no matter where

the waveform corresponding to S(f) is located on the time scale,

a replica of its CAF, Xa (V,rT), appears in x(V,T) somewhere in the

interval ITI < NA/2 centered at T = 0.

Since X(V,r) is periodic in r, we define the r-limited CAF

X(V,T) S x(V,r) rect N) for all VT . (C-8)

This function is nonzero only for lvI < 1/1 and for IjT < NA/2.

Accordingly, using (C-6), we only calculate it for sample values

X (,'mA= N-- 1 exp(i2rjm/N) j+ nNA.) S -n,

XNNANA N6

for < Imi <(N (C-9)

Furthermore, as noted under (C-6), the sum on j can be limited to

Ijj < N/2, by using the limited extent of S(f) in (C-4). The

increments in (C-9) are A, = 2/(NA) and A = 6.

Now define the weighted approximate CAF

Xb(vT) - X(v,r) C(V,T) for all v,r . (C-10)

This function is nonzero only for IvI < 1/A and Iti < NA/2, in

which case we limit its calculation to
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(2n mt) = 2(n ,) .2
Xb(•lmt1) = ( •,ma • (-,mA) for Inl < N < < (C-1I)

This result, combined with (C-9), is equivalent to (40) in the

main text. The subscript b explicitly recognizes the approximate

nature of this weighted CAF. In fact, use of (C-7), (C-8), and

(C-10) indicates the precise form of this approximation to be

T

Xb(vr) = IX 1a(,) D 6NA("1 rect N) V(V,) for all V,r. (C-12)

where Xa (v,r) is the CAF of S(f). If weighting ;ý(V,:) is chosen

to cutoff in r below Irl = NA/2, then the rect operation in

(C-12) can be removed. But, in general, this complicated

expression in (C-12) describes the GTFR in the v,t domain.

By combining (18) and (19), the smoothed WDF can be written

as a double Fourier transform of the weighted CAF. We therefore

adopt, as our approximation for the smoothed WDF,

Wb(t,f) A A 6 exp i2n.-t - i2nfmA n for all t,f.
VTnm N b2T'6

(C-13)

The function Wb(t,f) has period NA/2 in t and period 1/A in f;

therefore we only need to calculate

- (A,N-1) = 2 1 exp(i2nnk/N - i2nmj/N) Xb(2,mA)
nm

N N
for Ikl < 2j lJ < 2 (C-14)

The double sum can be terminated at ±N/2, as seen by reference to

(C-10) and (C-li). The result in (C-14) is equivalent to a
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combination of (46) and (52) in the main text.

The doubly periodic nature of Wb(t,f) is made apparent by

developing (C-13) as

Wb(t,f) JJ dv dr exp(i2rvt-i2nfr) Xb(Vt} 4 64 (v) & (r)
V 1

tf 6 (f N f - ) C - 5
- Wb(tJf) 6N = Wb(t - n-,f - , (2-15)

fnm

where Wb(tf) is the WDF corresponding to modified CAF Xb(V,T) in

(C-12ý. Thus, regardless of where the energy of waveform s(t) is

located in the t,f plane, a replica of the energy distribution

appears in Wb(t,f) in the fundamental rectangle ±NA/4 by ±1/(2L)

centered at t,f = 0,0; this behavior has been verified

numerically in the program in appendix B.
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APPENDIX D. ROTATION OF TWO-DIMENSIONAL SMOOTHING FUNCTION

Let arbitrary weighting function Z(V,T) be expressed in terms

of a normalized function i(x,y) according to

i'(V,T) = 5(v/B,r/D) , (D-1)

where B and D are some characteristics locations on the v and T

axes, respectively. An example of a tilted Gaussian weighting is

given in (20) and figure 4. The remaining two-dimensional

functions related to 5(x,y) are just as in (9) - (11), namely

U(xP) = f dy exp(-i2npy) U(x,y) , (D-2)

u(a,y) = f dx exp(+i2nxa) a(x,y) , (D-3)

U(aA) = f dy exp(-i2ngy) u(ct,y)

= f dx exp(+i2nxa) U(x,A) =

-f dx dy exp(+i2nxa-i2n.y) 5(x,y) . (D-4)

It then follows that the remaining two-dimensional functions

corresponding to weighting ;'(v,r) in (D-1) can be expressed as

V(v,f) = D U(v/B,Df) ,

v(tr) = B u(Bt,r/D) ,

V(t,f) = BD U(Bt,Df) . (D-5)

Compare with (20) - (23) for a specific example.
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Now consider rotation of normalized weighting a by angle 8

in the v/B,r/D plane. Letting C = cos(8) and S = sin(9), the

rotated weighting corresponding to ; is then defined as

C(v,r) = iC2 + SL, CD - SvB DCv + SET, Cr _ S v) (D-6)

where we also used (D-1). The corresponding (rotated) two-

dimensional smoothing function will be shown below to be given by

R(t,f) = BD U(CBt - SDf, CDf + SBt) (D-7)

= V(Ct - S~f, Cf + S!tJ , (D-8)

where we used (D-5). Thus, the two-dimensional normalized

smoothing function U is rotated by angle -e in the Bt,Df plane.

This rule holds regardless of the forms of Q or U.

The two remaining functions r(t,r) and R(v,f) are not

available in closed form involving any of the normalized

functions, in general; for example,

R(v,f) = dT exp(-i2JfT) i(V,T) =

dr exp(-i2nfr) fi CY + S' CL - SB• (D-9)

This latter integral requires a slice of Q(i',y) along a line not

parallel to either coordinate axis; suct a Fourier transform is

not given simply in terms of U, u, or U. This type of result

might have been anticipated by looking at the examples in (21)

and (22) which contain oscillatory terms.
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To derive (D-7), we employ (D-6) to obtain

R(tf) if dv dr exp(i2nvt-i2nfr) r(v,r)

= 'dv dT exp(i2nvt-i2nfr) E C! + S!, CT - SY . (D-101

Now let x = Cv/B + St/D, y = Cr/D - Sv/B; then v/B = Cx - Sy,

r/D = Cy + Sx, for which the Jacobian is BD. Then (D-10) becomes

R(tf) = BD if dx dy exp[i2nBt(Cx-Sy) - i2nDf(Cy+Sx)) Z(x,y) =

= BD if dx dy exp(i2n(CBt-SDf)x - i2n(CDf+SBt)y] fi(x,y) . (D-11)

Reference to (D-4) immediately yields (D-7). (As a check, 8 = 0

yields

R(t,f) = BD U(Bt,Df) = V(t,f) , (D-12)

where we used (D-5).)
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ABSTRACT

The complex envelope of a narrowband waveform y(t) typically
has logarithmic singularities, due to discontinuities in y(t) or
its derivatives, which have little physical significance. The
complex envelope also has a very slow decay in time, due to the
discontinuous spectrum associated with its very definition; this
slow decay can mask weak desired features of the complex
envelope. In order to suppress these undesired behaviors of the
mathematically defined complex envelope, a filtered version is
suggested and investigated in terms of its singularity rejection
capability and better decay rate. Finally, numerical computation
of the complex envelope, as well as its filtered version, by
means of a fast Fourier transform (FFT) is investigated and the
effects of aliasing are assessed quantitatively. A program for
the latter task, utilizing an FFT procedure with collapsing, is
furnished in BASIC.
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COMPLEX ENVELOPE PROPERTIES, INTERPRETATION,

FILTERING, AND EVALUATION

INTRODUCTION

When a narrowband input excites a passband filter, the output

time waveform y(t) is a narrowband process with low-frequency

amplitude- and/or phase-modulations. The evaluation of this

output process y(t) can entail an extreme amount of calculations

if the detailed behavior of the higher-frequency carrier is

tracked. A much better procedure in this case is to concentrate

instead on determination of the low-frequency complex envelope of

the narrowband output process y(t) and to state the carrier

frequency associated with it. Then, the detailed nature of the

output can be found at any time points of interest if desired,

although, often, the complex envelope itself is the quantity of

interest.

The complex envelope of output y(t) is determined from its

spectrum (Fourier transform) Ytf) by suppressing the negative

frequencies, down-shifting by the carrier frequency, and Fourier

transforming back into the time domain. For a complicated input

spectrum and/or filter transfer function with slowly decaying

spectral skirts, these -alculations can encounter a large number

of data points and require large-size fast Fourier transforms

(FFTs) for their direct realization. In this case, the use of

collapsing or pre-aliasing ri; pages 4 - 5] can be fruitfully

employed, thereby keeping storage and FFT sizes small, without

any loss of accuracy. This procedure will be employed here.
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As will be seen, when the complex envelope is re-applied to

the one-sided carrier term and the real part taken, the exact

narrowband waveform y(t) is recovered. However, if the complex

envelope itself is the quantity of interest, it has some

undesirable features. The first problem is related to the fact

that if waveform y(t) has any discontinuities in time, its

Hilbert transform contains logarithmic infinities, which show up

in the complex envelope. The second problem is generated by the

operation of truncating the negative frequencies in spectrum

Y(f); this creates a discontinuous spectrum which leads to a very

slow decay in time of the magnitude of the complex envelope.

Since numerical calculation of the complex envelope is

necessarily accomplished by sampling spectrum Y(f) in frequency f

and performing FFTs, this slow time decay leads to significant

aliasing and distortion in the time domain of the computed

quantities.

Because these features in the mathematically defined complex

envelope are very undesirable, there is a need to define and

investigate a modified complex envelope which more nearly

corresponds to physical interpretation and utility. The time

discontinuities in y(t) show up in Y(f) as a 1/f decay for large

frequencies, whereas the truncation of the negative frequencies

of Y(f) shows up as a discontinuity directly in f. Both of these

spectral properties can be controlled by filtering the truncated

spectral quantity, prior to transforming back to the time domain.

We will address this filtered complex envelope and its efficient

evaluation in this report.

2
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When the waveform y(t) is real and/or causal, its spectrum

Y(f) possesses special properties which enable alternative

methods of calculation. Thus, it sometimes suffices to have only

the real (or imaginary) part of Y(f) and to employ a cosine (or

sine) transform, rather than a complex exponential transform.

The aliasing properties of these special transforms, when

implemented by means of FFTs, will also be addressed here.

3/4
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ANALYTIC WAVEFORM AND COMPLEX ENVELOPE

Waveform y(t) is real with amplitude modulation a(t) and

phase modulation p(t) applied on given carrier frequency fo;

however, y(t) need not be narrowband. That is,

y(t) = a(t) cos[2rf ot + p(t)] = Refz(t) exp(i2nf ot)I , (1)

where complex lowpass waveform

z(t) = a(t) exp[ip(t)] (2)

will be called the imposed modulation. The corresponding

spectrum of imposed modulation z(t) is

Z(f) = f dt exp(-i2nft) z(t) . (3)

(Integrals without limits are from -w to +w.) The magnitude

of spectrum Z(f) is depicted in figure 1; it is generally concen-

trated near frequency f = 0. The graininess of the curves here

is due to plotter quantization, not function discontinuities.

From (i), since waveform

y(t) = 1 z(t) exp(i2nf t) + 1z*t) exp(-i2nf t) , (4)

its spectrum can be expressed as (see figure 1)

1
Y(f) = Z(f-fo) + I Z*(-f-f 0 ) ; Y(-f) = Y*(f) (5)

It will be assumed here that y(t) has no dc component; that is,

Y(f) contains no impulse at f = 0.

5
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ANALYTIC WAVEFORM

The single-sided (positive) frequency spectrum is defined as

Y+(f) = 2 U(f) Y(f) = U(f) Z'f-fo) + U(f) Z*(-f-f ) = (6)% 0 0

= Z(f-fo) - U(-f) Z(f-f ) + U(f) Z (-f-f ) for all f (7)

Here, U(x) is the unit step function; that is, U(x) is I for

x > 0 and U(x) is 0 for x < 0. The analytic waveform

corresponding to y(t) is then given by Fourier transform

y+(t) = f df exp(i2nft) Y+(f) . (8)

In order to further develop (8), we define a single-sided

(negative) frequency function

10 for f > 0)

N(f) = U(-f) Z(f-fo) = f (9)
0 Z(f-fo) for f < 0

which can be determined directly from the spectrum Z(f) of the

imposed modulation z(t) in (2) if f is known. The magnitude of

N(f), scaled to peak value 1, is sketched in figure 1; it is

small if f0 is large, and is peaked near f - 0. The complex time

function corresponding to (negative frequency) function N(f) is

0

n(t) = f df exp(i2nft) N(f) = f df exp(i2aft) Z(f-f 0 ) . (10)

With the help of (9) and (10), the single-sided spectrum

Y+(f) in (7) can now be expressed as

7



TR 8827

Y+(f) =Z(f-f 0) - N(f) + N *(-f) I(1

with corresponding analytic waveform (8)

Y+(t) = exp(i2nf 0t) z(t) - n(t) + n*(t) =(12)

= exp(i2irf 0t) z(t) - i 2 Imin(t)] (13)

That is, the analytic waveform is composed of two parts, the

first of which is what we would typically desire, namely the

imposed modulation (2) shifted up in frequency by f 0. The second

term in (13), which is totally imaginary, is usually undesired;

it can be seen from (10) and IN(f)I in figure 1 to be generally

rather small. There also follows immediately, from (13) and (2),

the expected result

Rejy+(t)I = a(t) cos[2nf Ot + pMt) = yMt . (14)

Since analytic waveform y+(t) can also be expressed as

Y+(t) = y(t) + i YHpt) = y(t) + i y(t) * ni = y(t) + ifd nf{t-u'

(15)

where YH(t) is the Hilbert transform of y(t) and * denotes
convolution, (13) and (2) yield

yH(t) = a(t) sin[2Trf 0t + p(t)J - 2 Imjn(tfl .(16)

If we define (real) error waveform e(t) as the difference between

the Hilbert transform of (1) and the quadrature version of

original waveform, (1), we have

8
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e(t) a yH(t) - a(t) sinf2afot + p(t)] (17)

00= - 2 Imln(t)} - i [n(t) - *(t)] - (18)

0
= - 2 Im J df exp(i2nft) Z(f-fo,) (

-2 Im {exp(i2nfo0t) df exp(i2nft) Z(f) , (20)
-00-

where we used (16) and (10). The error spectrum is, from (18)

and (9),

E(f) = i [N(f) - N (-f)] = (21)

-i Z*(-f-fo0  for f > :1 (22)
i z(f-fo for f <0

Then, E(-f) = E*(f). The magnitude of E(f) is displayed in

figure 2; it is generally small and centered about f 0.

The total energy in real error waveform e(t) is

Sdt [e(t)] 2 = f df IE(f) 12 .

f df [N(f) - N*(-f)J [N*(f) - N(-f)j =

f df LIN(f) 12 + IN(-f) 12J 1 2 f df IN(f) 12

0 -f
df IZ(f-f0)1 2  = 2 f df Iz(f)12 (23)

9
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where we used (21), the single-sided behavior of N(f), and (9).

This is just twice the energy in the spectrum Z(f) of imposed

modulation z(t) below frequency -f 0 ; inspection of figure 1

reveals that this quantity will usually be small.

COMPLEX ENVELOPE

The complex envelope X(t) of waveform y(t) is the frequency

down-shifted version of analytic waveform y+(t):

y(t) a y+(t) exp(-i2nf ot) = (24)

= z(t) + i e(t) exp(-i2nfo t) , (25)

where we used (13) and (18) and chose to downshift by fo Hertz,

the known carrier frequency in (1). Waveforms z(t) and e(t) are

lowpass, as may be verified from their spectra in figures 1 and

2. The spectrum of the complex envelope is, from (25),

Y(f) = Z(f) + i E(f+f ) . (26)

Equations (25) and (26) show that the complex envelope and its

spectrum are each composed of a desired component and an error

term.

The magnitudes of the complex envelope spectrum Y(f) and its

error component are displayed in figure 2; Y(f) is discontinuous

at f - -fo but has zero slope as f 4 -fo, whether from above or

below. The left tail of Z(f) and shifted error spectrum,

i E(f+fo), interact so as to yield Y(f) = 0 for f < -fo; this is

most easily seen from a combination of (24) and (6), namely

11
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Y(f) = Y+(f+fo) = 2 U(f+f ) Y(f+f ) = (27)

- U(f+f ) [Z(f) + Z (-f-2f )] . (28)

The results for the error spectrum and energy in (22) and

(23), respectively, were originally derived by Nuttall [2);

however, we have augmented those results here, to give detailed

expressions for the error and complex envelope waveforms and

spectra. There are no approximations in any of the above

relations; they apply to waveforms with arbitrary spectra,

whether carrier frequency f0 is large or small.

EXTRACTED AMPLITUDE AND PHASE MODULATIONS

It is important and useful to also make the following

observations relative to the amplitude and phase modulations that

can be extracted from the complex envelope X(t). Define

A(t) = ly(t)l , P(t) - arg|y(t)) . (29)

Then, from (14) and (24), the original waveform can be expressed

in terms of these extracted amplitude and phase modulations as

y(t) = Rely(t) exp(i2nf t)l = A(t) cos[2nf t + P(t)] . (30)
0 0

However, complex-envelope modulations A(t) and P(t) in (29) and

(30) are not generally equal to imposed modulations a(t) and p(t)

in (1), as may be seen by reference to (25). Namely, complex

envelope X(t) is equal to complex lowpass waveform z(t) in (2)

only if error e(t) is zero. But the energy in waveform e(t), as

12



TR 8827

given by (23), is zero only if imposed spectrum Z(f) in (3) is

zero for f < -f 0 When Z(f) is not zero for f < -f., complex-

envelope modulations A(t) and P(t) do not agree with imposed

modulations a(t) and p(t), despite the ability to write y(t) in

the two similar real forms (1) and (30) involving an amplitude-

and phase-modulated cosine with the same f0 .

Another interesting property of form (30) is that its

quadrature version is identically the Hilbert transform of y(t).

This is in contrast with the quadrature version of (1) involving

imposed modulations a(t) and p(t); see (17) - (20). To prove

this claim, observe that the quadrature version of the last term

of (30) is, using (29),

q(t) M A(t) sin(2nf t + P(t)] = (31)

1- [A(t) exp(iP(t) + i2nf t) - A(t) exp(-iP(t) - i2nf t)] =
0 0

1=[y(t) exp(i2fo0t) - y*(t) exp(-i2nf ot)] . (32)

The spectrum of this waveform is

f x-iU(f) Y(f) - U(-f) *(.4)]=

I i Y(f) for f > 0

i Y(f) for f < 01 -i sgn(f) Y(f) = YH(f), (33)

where we used (27), the conjugate symmetry of Y(f), sgn(x) = +1

for x > 0 and -1 for x < 0, and (6) in the form

Y+(f) = 2 U(f) Y(f) = [I + sgn(f)] Y(f) = Y(f) + i Yh(f) (34)

13
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the latter result following from (15). Thus, (33) and (31) yield

the desired result

1
Y1 1(t) = 1 D y(t) = q(t) = A(t) sin[2nfot + P(t)] . (35)

This simple connection between (35) and (30) holds in general

when modulations A(t) and P(t) are extracted from the complex

envelope according to (29); there are no narrowband assumptions

required. The more complicated connection between (16) and (1),

which is applicable for the imposed modulations, involves an

error term; this error is zero if and only if spectrum Z(f) in

(3) is zero for f < -f0

SPECTRUM Y(f) GIVEN

All of the above results have presumed that waveform y(t) in

the form (1) was available as the starting point. But there are

many problems of interest where spectrum Y(f) is the initial

available quantity, rather than y't). For example, the output

spectrum Y(f) of a linear filter L(f) subject to input spectrum

X(f) is given by Y(f) = L(f) X(f) and can often be easily and

directly computed. In this case, there are no given amplitude

and phase modulations a(t) and p(t) as in (1); in fact, there is

not even an obvious or unique center frequency for a given

spectrum Y(f). Nevertheless, many, but not all, of the relations

above hold true under appropriate definitions of the various

terms.

14
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Given spectrum Y(f) with conjugate symmetry, Y(-f) - Y*(f),

we begin with its corresponding real waveform

y(t) = { df exp(i2nft) Y(f) . (36)

The Hilbert transform of y(t) and its spectrum are given by

yH(t) - y(t) , (f) = -i sgn(f) Y(f) . (37)

The single-sided spectrum and analytic waveform are, respectively

Y+(f) = 2 U(f) Y(f) = [I + sgn(f)] Y(f) = Y(f) + i YH(f) , (38)

y+(t) = 2 J df exp(i2nft) Y(f) = y(t) + i yH(t) (39)

0

Up to this point, all the functions are unique and nothing

has changed. However, we now have to choose a "center frequency"

fc of Y+(f), since none has been specified; this (somewhat

arbitrary) selection process of f c is addressed in appendix A, to

which the reader is referred at this point. Hence, we take f c as

given and define lowpass spectrum

Y(f) = Y+(f+f ) = 2 U(f+f % Y(f+fc) . (40)
c lC)

The corresponding complex envelope is

y(t) = y+(t) exp(-i2nf ct) • (41)

We define the complex-envelope amplitude and phase

modulations as in (29):

A(t) = lI(t)l , P(t) = argIy(t)j = argfy+(t)] - 2nf ct (42)

15
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Then, from (39), (41), and (42), we have

y(t) = Rejy+(t)} = Rely(t) exp(i2nf ct)J = A(t) cos[2nf ct + P(t)).

(43)

Now when we define the quadrature version of the right-hand side

of (43) in a manner similar to (31), but now employing f instead

of (unspecified) fo, the same type of manipulations as in

(31) - (35) yield relations identical to those given above:

Q(f) = YHf , YH (t) = q(t) = A(t) sin[2nfct + P(t)] . (44)

Because the choice of centcr frequency fc of single-sided

spectrum Y+(f) is somewhat arbitrary (see appendix A), this makes

complex envelope X(t) and its extracted phase P(t) somewhat

arbitrary. However, the argument, 2 ltfct + P(t) = argfy+(t)I, of

(43) and (44) is not arbitrary, as seen directly from (41) and

the uniqueness of y+(t) in (39). Furthermore, extracted

amplitude modulation A(t) in (42) has no arbitrariness since it

is given alternatively by ly+(t)l, according to (41).

Since A(t) and P(t) are lowpass functions, we can compute

them at relatively coarse increments in time t. Then, if we want

to observe the fine detail of y(t), as given by (43), we can

interpolate between these values of A(t) and P(t) and then

compute the cosine in (43) at whatever t values are of interest.

This practical numerical approach will reduce the number of

computations of A(t) and P(t) required; in fact, in many

applications, A(t) and P(t) will themselves be the desired output

quantities of interest, rather than narrowband waveform y(t) with

all its unimpoctant high-frequency detail.

16



TR 8827

EXAMPLE

Consider the fundamental building block of systems with

rational transfer functions, namely

y(t) = U(t) exp(-at) cos(2nf ot + 0) , a > 0 , f > 0 , (45)

where U(t) is the unit step in time t. Let

w = 2nf , = 2nf , c = a - i . (46)

Then, from (1) and (2), the imposed modulations are

a(t) = U(t) exp(-at), p(t) = +, z(t) = U(t) exp(if-at) , (47)

yielding, upon use of (3) and (46), spectrum

Z(f) = exp(i+) = exp(i) (48)
a + i2nf a + •w

From (5) and (48), the spectrum of y(t) is

Y(f) = 1[ exp(i) + (49)2~f a + i(w - w 0) a + i(W + WO ' 49

and (6) yields single-sided spectrum

exp(i+) + . (50)
Y+(f) = U(f) + i(W - 0o) a + i(w + wo)

0

Now we use (9), (48), and (46) to obtain (negative) spectrum

0 for f > 0'
N(f) = U(-f) c i#j ={x (51)7c + if for f < 0

17
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Then, from (10), the corresponding complex time waveform is

0 c

n(t) df exp(iwt) exp(iý) = exp(i4-ct) f duf c + iW i21 t exp(tu) (52)
-O c-i-

For t < 0, let x = Itlu = -tu, to get

citi

n(t) = exp(iý-ct) dx exp(i-x) =-ct) El(citi) (53)i2rr -- xpxp(x) =2--
c~ It I 2n
cjtJ-i-

where Ej(z) is the exponential integral (3; 5.1.1). It is

important to observe and use the fact that the path of

integration in the complex x-plane in (53) remains in the fourth

quadrant and never crosses the negative real x-axis

[3; under 5.1.6).

Also, for t > 0, let x = -tu in (52), to get

-ct

n(t) = exp(i-ct) dx exp(-x) - exp(i.-ct) El(-ct) . (54)

-ct+ic

Here, the contour of integration remains in the second quadrant

of the complex x-plane and again does not cross the negative real

x-axis [3; under 5.1.6]. The combination of (53) and (54) now

yields complex time waveform

i
n(t) = -- exp(i-ct) El(-ct) for all t # 0 . (55)

18
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Now, we use (18) to obtain real error waveform

1

e(t) = - • Relexp(i+-ct) El(-ct)) for all t # 0 . (56)

(Or we could directly use (20) with (48).) The corresponding

error spectrum follows from (22), (48), and (46) as

-i expt-iý) for f > 0

E(f) = - for f < 4 (57)

From (16), (17), (47), and (56), the Hilbert transform of

y(t) is

yH(t) = U(t) exp(-at) sin(2nf t+f) -

1
- - Relexp(i+-ct) El(-ct)} for all t 5 0. (58)

In addition, using (15) and (45), the analytic waveform is

y+(t) = U(t) exp(i+-ct) - i 1 Re{exp(i+-ct) E1 (-Ct)l

for all t 9 0. (59)

The complex envelope follows from (25), t47), and (56) as

i
y(t) = U(t) exp(i+-at) - - exp(-iwot) Relexp(i+-ct) El(-ct)}

for all t # 0 . (60)

The corresponding spectrum is, from (27) and (50),

Y(f) = U(f+fo)1 (i) + a p } . (61)
0 [a + iW a + i(w + 2wo1

19
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The extracted amplitude and phase modulations A(t) and P(t) of

complex envelope y(t) are now available by applying (42) to

(60). Since the first term, by itself, in (60) has the imposed

amplitude and phase modulations a(t) and p(t) as specified in

(47), A(t) cannot possibly equal a(t), nor can P(t) equal p(t).

This example is an illustration of the general property stated in

the sequel to (30). The reason is that spectrum Z(f) in (48) is

obviously nonzero for f < -f0.

From (23) and (48), the energy in error waveform e(t) is

-f
2 2 2 f a[ arctan . (62)

For comparison, the energy in desired component z(t) in complex

envelope X(t) of (25) is, from (47),

dt Iz(t)l 2 1 (63)
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SINGULAR BEHAVIOR

Since [3; 5.1.11 and footnote on page 2281

El(z) = - ln(z) - y + Ein(z) , (64)

where Ein(z) is entire, the error waveform in (56) has a

component

- I Re{-exp(i+-ct) ln(-ct)} =
n

= - Relexp(i+-ct) [ln(-c sgn(t)) + initl] for t # 0 (65)

of which the most singular component is

injtI exp(-at) cos(wot + *) - cos(+) initi as t 4 0 . (66)

The only situation for which this logarithmic singularity does

not contribute an infinity as t 4 0 is when + = - n/2 (or n/2).

That corresponds to the special case in (45) of

y(t) = U(t) exp(-at) sin(w0 t) for + = - n/2 , (67)

which is zero at t = 0; that is, y(t) is continuous for all t.

However, even for # = - n/2 in the first term of (66), the

product lnjtI sin(o0 t) has an infinite slope at its zero at

t = 0, leading possibly to numerical difficulties.

The spectrum Y(f) follows from (49) as

w
=0Y(f) 22 + + i2aw - w2 for + = 2 (68)

0
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which decays as w-2 as w - ±-; this spectral decay is the key

issue for avoiding a logarithmic singularity in e(t), YH(t),

y+(t), and X(t). All values of * other than ±n/2 lead to

asymptotic decay of Y(f) in (49) according to -i cos(t) -,

which leads to a logarithmic singularity in the various time

functions considered here, including the complex envelope.

Continuing this special case of n = - n/2 in (67) and (68),

we find, from (48),

Z(f) = +i z(t) = U(t) (-i) exp(-at) for € = - . (69)

Also, there follows from (56), (58), and (60), respectively, the

error, the Hilbert transform, and the complex envelope, as

1
e(t) = Imlexp(-ct) El(-ct)] (70)

YH(t) = - U(t) exp(-at) cos( 0t) + e(t) , (71)

y(t) U(t) (-i) exp(-at) + i exp(-iw t) e(t) , (72)

all for n = - r/2.

The asymptotic behavior of error e(t) at infinity is

available from [3; 5.1.51) as

W0 1 Rt•0e(t) a2  2 it t as t • +• for * = - ( 73)

The origin behavior is available from [3; 5.1.11]:
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J - -arctan(o /a) as t - 0-
II 0

e(t) J for =74)

_ - arctan(wo/a) as t 4 0+

Observe that these limits in (74) at t = ±0 are both finite.

Also, note the very slow decay in (73), namely l/t, of error e(t)

at infinity.

When 4 # ±n/2, the generalizations to (73) and (74) are

[3; 5.1.51 and 5.1.11]

a cost - 0 sin+__ __o__ __ _ 1
e(t) 2 2 --* as t - ±= , (75)2 + 2T

0

and

e(t) C " initI as t 4 0 . (76)

Now, error e(t) becomes infinite at the origin and decays only as

1/t for large t. (If tanf = a/wo' then e(t) = O(t- 2 ) as t -±

this corresponds to Y(O) = 0 in (49).)
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GENERAL HILBERT TRANSFORM BEHAVIOR

The example of y(t) in (45) (when t n ±n/2) illustrates the

general rule that if a time function has a discontinuity of value

D at time to, then its Hilbert transform behaves as D/n lnjt-t0 1

as t 4 to0  To derive this result, observe that

y(t) ~ V + ID sgn(t-t ) as t 4 t , (77)
20 0

when y(t) is discontinuous at to• Then, for t near to, the

Hilbert transform of y(t) is dominated by the components

- C

-- du [V + ½D sgn(t-to-u)] +YH(t) u

-b

b
+ f ! du- JV + -D sgn(t-t1-U)

T1 - 12JS

E

where E is a small positive quantity and the principal value

nature of the Hilbert transform integral has been utilized. The

integrals involving constant V cancel; also, by breaking the

integrals in (78) down into regions where sgn is positive versus

negative, and watching whether t-t 0 is positive or negative, the

terms involving ln(E) cancel, leaving the dominant behavior

YH(t) ~ • Init-t as t 4 t (79)

(The example in (66) corresponds to a discontinuity D = cos(f) at

to = 0, as may be seen by referring to (45).) When Hilbert
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transform YH(t) has this logarithmic singularity (79), then so

also do y+(t), y(t), and e(t) at the same time location. Thus,

the complex envelope corresponding to a discontinuous y(t) has a

logarithmic singularity.

An alternative representation for Hilbert transform y,(t) in

(15) is given by

YH(t) = I df exp(i2nft) (-i) sgn(f) Y(f) (80)

If Y(f) decays to zero at f = ±- and if Y(f) is continuous for

all real f, then an integration by parts on (80) yields (due to

the discontinuity of sgn(f)) the asymptotic decay

Y(t) Y(O) as t - ±• (81)

(Results (73) and (75) are special cases of (81), when applied to

example (49).) The only saving feature of this very slow decay

for large t in (81) is that Y(O) may be small relative to its

maximum for f ? 0. For example (49), IY(fo0 )1 (2a)-1 for

a << wo' which is then much larger than Y(0) • - sin#/w 0 . In

this narrowband case, the slow decay of (81) will not be overly

significant in analytic waveform y+(t) until t gets rather large.

If Y(0) is zero, the dominant behavior is not given by (81), but

instead is replaced by a i/t2 dependence, with a magnitude

proportional to Y'(0).
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GRAPHICAL RESULTS

We now take the example in (45) with parameter values

a = 1 sec-I and f. = 100 Hz. The error e(t) in (56) is plotted

versus time t in figure 3 for three different values of phase 4.

A time sampling increment Lt of .02 msec was used to compute

(56), since these error functions are very sharp in t, being

concentrated around t = 0 where the waveform y(t) has its

discontinuity. The period of the carrier frequency is 1/fo = 10

msec; however, the error functions vary significantly in time

intervals less than 1 msec. These functions approach -- at

t = 0, according to (66), except for + = -n/2.

The corresponding complex envelope is given by (72); its

magnitude is plotted in figure 4 over a much wider time interval.

The straight line just to the right of the origin is the desired

exponential decay a(t) = exp(-at), which dominates the error e(t)

in this region of time. Eventually, however, for larger t or

negative t, the error e(t) dominates, with its much slower decay

rate. It is readily verified that the asymptotic behavior

predicted by (75) is in control and very accurate near both edges

of figure 4.

At the transition between the two components, the random

vector addition in (72) leads to large oscillations; the period

of the carrier is 1/fO = 10 msec, meaning that the transition

oscillations in figure 4 have been grossly undersampled with the

time increment ALt approximately 40 msec that was used. The error

curve for * = 0 is much smaller than the other two examples over
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most of its range; however, the magnitude error goes sharply to

at t = 0.

From (72) and figure 4, it is seen that for 4 = -n/2, the

phase P(t) of complex envelope y(t) is essentially -n/2 for

t > 0, until we reach the transition. To the right of the

transition, the phase of y(t) exp(iw0t) is essentially n/2

because e(t) > 0 for t > 0, for this example. For t < 0, the

phase of X(t) exp(i 0t) is -n/2 because e(t) < 0 for t < 0. We

will numerically confirm these claims later when we compute the

analytic waveform and complex envelope by means of FFTs.
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FILTERED COMPLEX ENVELOPE

It was shown in (26) that the spectrum Y(f) of the complex

envelope X(t) of a given waveform y(t) with complex imposed

modulation z(t) is given by a desired term Z(f) plus an undesired

error term, namely,

Y(f) = Z(f) + i E(f+f ) (82)

According to figures 1 and 2, the major contribution of the first

term, Z(f), is centered around f = 0, while the undesired second

term in (82) is centered about f = -f . This suggests the

possibility of lowpass filtering complex envelope spectrum Y(f)

in order to suppress the undesired frequency components. Also,

this will eliminate or suppress the undesired logarithmic

singularities present in the complex envelope X(t).

LOWPASS FILTER

To this aim, let H(f) denote a lowpass filter with H(0) = 1

and cutoff frequency, fl, smaller than f0 " For example, the Hann

filter is characterized by

ICos' for Jll < fl

H(f) = ) o . (83)

0 otherwise

The filtered complex envelope spectrum is, in general,

G(f) = Y(f) H(f) • (84)
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The importance of having f1 < fo0 is that filter H(f) will then

smoothly cut off its response before reaching the discontinuity

at f = -f0 of the spectrum Y(f) of the complex envelope y(t); see

(27). In this way, we can avoid the slowly decaying behavior of

the complex envelope X(t) fur large t, namely i/t, which

inherently accompanies its discontinuous frequency spectrum.

This will prove important when we numerically evaluate the

filtered complex envelope, by sampling (84) at equispaced

frequencies and performing a Fourier transfoi'm into the t domain,

necessarily encountering the unavoidable aliasing in time

associated with such a technique.

Since the complex envelope £(t) is given by (25) as the sum

of desired component z(t) and an error term, the filtered

waveform corresponding to spectrum G(f) in (84) is given by

g(t) = y(t) * h(t) =

= z(t) B h(t) + [i e(t) exp(-i2nf t)] S h = (85)

= gd(t) + gu(t) , (86)

where * denotes convolution, h(t) is the impulse response of

the general filter H(f) in (84), and gd(t) and gu(t) are,

respectively, the desired and undesired components of the

filtered complex envelope g(t). We should choose filter H(f) to

be real and even; then impulse response h(t) is also real and

even.

The Hann filter example in (83) could be replaced by a filter

with a flatter response about f = 0 and a sharper cutoff
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behavior. The major features that filter H(f) should have are a

fairly flat response in the Z(f) frequency range near f = 0, but

cut off significantly before getting into the major frequency

content of error term E(f+f0 ), which is centered about f = -f 0 "

If the given waveform y(t) in (1) is not really narrowband, there

may not be any good choice of cutoff frequency f,; that is, it

may be necessary to sacrifice some of the higher frequency

content of z(t) or to allow some of the error e(t) to pass.

EXAMPLE

We again consider the example given in (47) and (48), along

with the Hann filter in (83). In order to evaluate the filtered

complex envelope g(t) in (86), we define an auxiliary function

E(z) = exp(z) El(Z) , (87)

where E1 (z) is the exponential integral [3; 5.1.1]. Then, when

we use the fact that (83) can be expressed as

1 1 1
H(f) = 1 + T exp(inf/fl) + 1 exp(-inf/fi) for ifi < f, , (88)

we encounter the following two integrals. First, we need the

result

f 11
exp(iwt+ic#n/f 1 ) =_ 1 n[exp(_iw t)E(Un)_exp( t)E(v

df a + i2w + i = i2-
_f o

(89)
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where w = 2nf, n is an integer, f1 < fo' and we defined

u =-(a + i2w - iWl)(t + 1n/fl)

v = +-( +i2w + iwl)(t + 1n/fl) (90)

To derive this result, we let x = -(a + i2wo + iw)(t + ½n/fl) in

(89) and used [3; 5.1.1], along with the important fact that

f < fo' which guarantees no crossing of the negative real axis

of the resulting contour of integration in the complex x-plane.

Also, when we define

1
n U(fo=0) = -(a - i~l)(t + ln/fl) ,

1-n Un0

V V(fo=0) = -(a + iwl)(t + 1n/fl) , (91)

then for fo = 0, we find the second integral result required,

namely,

exp(iwt+i n/fl) n
f d + i= i2n [ep(_iwit)E(Un)_exp(i It)E(Vn)]
-f,

+ U(t + ½n/fl) exp(-at - -an/fl) . (92)22 I 1

The extra term in the second line of (92) is due to a crossing of

the negative real axis in the complex x-plane by the contour of

integration when we make the substitution

x = - (a + iw)(t + ½n/fl) in the integral of (92).

The desired component of the filtered complex envelope is

given by the first term of (85) and (86), in the alternative form

32



TR 8827

gd(t)= df exp(i2nft) Z(f) H(f)

f1
--f df exp(i2nft) exp(i*)c'os 2(n (93a + iw - 2(931

= ei+ e-at [U(t) + 1U+t + exp(a) + IU t - exp ( ]a +

111 4 1f2 1 2 ) 2

+ [exp(-iwit) E(u0o) - E(u 1 ) - . E(u _v )

-exp(iwit)tE(vo) - E(v -1_I) (94)1 1

Here, we also used (48), (88), and (92). Since the factor

multiplying exp(i+) in (93) has conjugate symmetry in frequency

f, the time function multiplying exp(i+) in (94) is purely real

for all time t.

The undesired spectral component in (82) is given by

i E(f+f ) Z* (-f-2f ) for f > -f 0 (95)

where we used (22). Therefore, using restriction f1 < fo, the

undesired time component in the filtered complex envelope in

(86) is given, upon use of (89), by

f1

M df exp(i2nft) exp(-iw cos 2 (Ef fgu~t a + i2w 2if

11

=expl-if)exp(-iw t)iE(u0 ) i -1 E(Ul) 1 E1u_.I -

_ exp(iwit) E(v 0 ) . 1 E(V -1 1 E(Vl) . (96)
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In contrast with (94), the time function multiplying phase factor

exp(-if) in (96) is complex. The total time waveform at the

filter output, g(t), namely the filtered complex envelope, is

given by (94) plus (96), and depends on *. In fact, since the

magnitude of total output g(t) depends on +, we will look at

plots of the magnitudes of components Igd(t)l and Igu(t)I,

neither of which depend on +.

For comparison, the complex envelope itself is given by (25)

in the form X(t) = z(t) + i e(t) exp(-i2nf 0t). Since these two

(unfiltered) components depend differently on phase *, we shall

also consider only their magnitudes Iz(t)l and le(t)l and compare

them with filtered components Igd(t)I and Igu(t)I, respectively.

In particular, from (48), the desired component of the complex

envelope y(t) for the example at hand is

z(t) = exp(i+ - at) U(t) for all t , 97)

while the undesired portion is given by (56) and (87) as

e(t) = - -Relexp(i+ - ct) El(-ct)l -!Relexp(i+) E(-ct)I (98)

for t ; 0, where c = a - iWO. The magnitude of complex waveform

z(t) is independent of *, but the magnitude of real error

waveform e(t) still depends on +; see figure 3.

The magnitudes of z(t) and gd(t) for a = 1 sec- and

f= 40 Hz are displayed in figure 5 on a logarithmic ordinate.

The filtered complex envelope component, gd(t), drops very

quickly to the left of t = 0 and is indistinguishable from z(t)

for t > 0; compare with figure 4. Thus, the passband of the Hann
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filter H(f) in (83) has been taken wide enough to pass the

majority of the frequency components of desired function Z(f) in

this example. The darkened portion of the plot just to the left

of t = 0 corresponds to a weak amplitude-modulated 40 Hz

component, which is the cutoff frequency f1 of filter H(f).

The magnitudes of gu (t) and error e(t) are displayed in

figure 6 for the additional choice of parameters fo = 100 Hz and

+ = -n/2 rad. The peak values of these undesired components at

t = 0 differ by over a factor of 10, through this process of

filtering the complex envelope. At the same time, the skirts of

filtered version gu(t) are down by several ciders of magnitude

relative to e(t). The thick plot of Igu(t)l is again a 40 Hz

component, which has been sampled at a time increment At = .002

sec.

For phase 4 0 instead, original waveform y(t) in (45) is

discontinuous at t = 0, giving rise to a Hilbert transform which

has a logarithmic infinity there; see (77), (78), and (79).

Therefore, the magnitude of error e(t) in figure 7 has an

infinity at t - 0, whereas the filtered quantity gu (t) is finite

there; in fact, Igu(t)I is independent of +. Although e(t) is

significantly reduced in value, away from the origin, relative to

figure 6, it is still larger than the filtered quantity gu(t).

Since the energy in error waveform e(t) is independent of + (see

(62)), smaller skirts in e(t) can only be accompanied by a larger

peak; in fact, this latter case for e(t) in figure 7 has an

infinite (integrable) peak at t = 0. By contrast, the energy in

the filtered undesired component gu (t) is, from (82) and (84),
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df IE(f+f 0 )1 2  IH(f)I22 (99)

which can be considerably less than the error energy, when filter

H(f) significantly rejects the displaced e-ror spectrum E(f+t 0 ).

This example points out that considerable reduction of the

undesired error term in the complex envelope can be achieved

through the use of lowpass filtering with an appropriate cutoff

frequency, and that the undesired singularities can be signif-

icantly suppressed. Furthermore, the desired component of the

complex envelope can be essentially retained. These conclusions

follow if the bandwidth of the imposed modulation, z(t) in (1)

and (2), is small relative to the carrier frequency fo"

Iz

.. .7

10-6

Figure 5. Filtered Complex Envelope; Desired Terms
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TRAPEZOIDAL APPROXIMATIONS TO ANALYTIC WAVEFORM,

COMPLEX ENVELOPE, AND FILTERED COMPLEX ENVELOPE

In this section, we address methods of evaluating the

analytic waveform and the complex envelope by means of FFTs.

We start by repeating the results in (6) and (8) for the

analytic waveform, that is,

Y+(f) = 2 U(f) Y(f) , (100)

y+(t) = df exp(i2nft) Y+(f) = { df exp(i2nft) 2 Y(f) . (101)

0

The trapezoidal approximation to (101) is obtained by sampling

with frequency increment A to get

y+(t) - exp(i2nnAt) 2 Y(nA) = (102)
n=0

= J df exp(i2nft) 2 Y(f) a 6A(f) =

0

-y+(t) 0 6/(t = Zyt - ,(103)

n

where sequence E0 = ½ and En = 1 for n Z 1, and summations

without limits are from -- to +w.

Notice that approximation y+(t) is a continuous function of

time t and has period 1/6 in t. The desired term in (103) is

that for n = 0, namely analytic waveform y+(t). Because y+(t)

can contain a slowly decaying Hilbert transform component, the

aliasing at separation 1/6 in (103) can lead to severe distortion
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in approximation y+(t) defined in (102).

Since y+(t) has period 1/A in t, we can confine its

computation to any interval of length 1/A. In particular, if we

divide this interval into N equally-spaced points (where integer

N is arbitrary), we can compute, from (102),

Ny+ = E in exp(i2nnk/N) 2 Y(nt) (104)

for any N contiguous values of k. If we choose the range

0 S k S N-i, and if we collapse the infinite sequence in the

summaad of (104) according to

Zn = 2A = En+jN Y(nA + jNA) for 0 S n I N-i (105)
j=0

then (104) can be written precisely as

k N-1
y+ = NA Z= exp(i2nnk/N) z. (106)

n=0 (

This last result can be accomplished by means of an N-point FFT

if N is highly composite. This is a very efficient method of

computing the aliased version of the analytic waveform as defined

by (102).
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COMPLEX ENVELOPE

The center frequency fc of single-sided spectrum Y+(f) in

(100) can be found by the method described in appendix A. Then

the complex envelope spectrum and waveform are, respectively,

Y(f) = Y+(f+fC) , (107)

y(t) f df exp(i2nft) Y(f)

= f df exp(i2nft) Y+(f+fc) = exp(-i 2 nfct) y+(t) (108)

The approximation to complex envelope X(t) is achieved by

relating it to that for analytic waveform y+(t) according to

Y(t) = exp(-i 2 nfct) y+(t) - (109)

= exp(-i 2 nfct) a =- E n exp(i2nn~t) 2 Y(nA) , (110)
n=0

where we used (108) and (102). The continuous function

exp(i2ft)(t), which is just ), has period 1/6 in t, which

simplifies its calculation. Using (109), (103), and (108), there

follows, for the approximation to the complex envelope,

t _ A)exp(-i2rrfcn/A)
i(t) = exp(-i 2 nfc Z y+1  -== Y +it - i cn

n n

The desired term in (111), for n = 0, is complex envelope X(t).

The n-th term has a time delay (aliasing) of n/A and a phase

shift of n2nf c/A radians, which is arbitrary because frequency
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sampling increment L in (102) is unrelated to centel- frequency

fc of Y+(f) in (100).

Sample values of complex envelope approximation j(t) can be

obtained from (110) as

N =exp -i2nfc Ii) A = En exp(i2nnk/N) 2 Y(nA) . (112)
n=O

Again, the infinite sum in (112) can be collapsed and realized

as an N-point FFT; see (104) - (106). The phase factor

Pk = exp(-i2nf k/(NA)) can be computed via recurrence

Pk = Pk-1 exp(-i2nfc/(NA)).

FILTERED COMPLEX ENVELOPE

The spectrum of the filtered complex envelope is given by

(84) as G(f) = Y(f) H(f). The filtered complex envelope waveform

is

g(t) = df exp(i2nft) G(f) = y(t) 0 h(t) (113)

and has low sidelobes and rapid decay in t, when filter H(f) is

chosen appropriately.

The approximation to g(t) adopted here will be generalized

slightly in order to allow for frequency-shifted sampling.

Specifically, we define
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ga(t) E df exp(i2nft) G(f) A 6A(f - a) = (114)

= A -z exp(i2n[nA + a]t) G(nA + a) . (115)
n

The function exp(-i2nat) ga(t) has period 1/6 in t, which allows

us to confine its calculation to any convenient period.

The behavior of approximation g (t) in (114) follows as

ga(t) = g(t) 9 [exp(i2nat) 6 1 /,(t)] =

= g(t) 0 = exp(i2nan/A) 6(t - )=
n

- X exp(i2nan/6) g(t -) . (116)
n

This is the aliased version of the filtered complex envelope.

The desired term, for n = 0, is the filtered complex envelope

g(t), independent of the choice of frequency shift a. Shift a

is arbitrary and could be taken as -f if desired.

Samples of g (t) are available from (115) according to

= A exp i2ua k- =- exp(i2nnk/N) G(nA + a) , (117)
n

which we can limit to 0 & k : N-i due to the periodicity of

ga(t). Again, the infinite sum on n can be converted to an

N-point FFT without error, by collapsing into the finite sequence

zn = A Z G(nA + a + jNA) for 0 f n • N-i. (118)
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The remaining phasor exp(i2nak/(NA)) in (117) can be quickly

obtained via recursion on k.

GRAPHICAL RESULTS

The same fundamental example introduced in (45) will be
-1

used here, again with a = 1 sec and fo = 100 Hz. For phase

ý = -n/2, FFT size N = 1024, and a frequency increment of

S= 1/80 Hz, the magnitude of i(t), namely A(t), is displayed in

figure 8 over the 1/A = 80 sec period centered at t = 0. This

selection of the time period has been purposely made the same as

that used in figure 4, for easy comparison of results. The major

difference between the * = -n/2 result in figure 4 and figure 8

is that the aliasing in the latter case causes the curve to have

a jagged behavior and to droop in the neighborhood of t = t40

sec. However, other examples could well have the aliasing

increase near the edges of the period. A total of 88,000 samples

of Y(f) at frequency increment A were taken in computation of

(104); the collapsing in (106) resulted in storage of only

N = 1024 cumplex numbers and the ability to use a single

relatively small N-point FFT. A program for the evaluation of

the complex envelope by means of an FFT with collapsing is

furnished in appendix B; the FFT uses a zero-subscripted array in

direct agreement with the mathematical definition of the FFT.

The corresponding phase, P(t) = argti(t)l, of the aliased

complex envelope is given in figure 9. The phase is

approximately -n/2 for 0 S t S 10 sec, as expected, since in
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this limited time interval, the error is not the dominant term.

However, over the rest of the period, the error term does

dominate and it has an exp(-iw t) behavior, where fo = 100;

see (25) and figure 3. Thus, the time sampling increment

At = 1/(NA) = .078 sec is grossly inadequate to track this

high-frequency term, and we get virtually random samples of the

phase of the complex exponential exp(-iw0 t).

To confirm the phase behavior outside the (0,10) sec

interval, we have plotted the phase of y(t) exp(iw0t) = y+(t) in

figure 10 as found by the FFT procedure above. To the right of

t = 10, the phase is approximately n/2, in agreement with the

fact that e(t) is real and positive for t > 0; see figure 3 and

(25). For time t < 0, the phase is -n/2 because e(t) < 0 for

t < 0. The oscillatory behavior at both edges of the period,

namely, for 30 < Itl < 40, is due to aliasing from adjacent lobes

indicated by (103) and (111).

When * is changed to 0 and everything else is kept unchanged,

the result for the magnitude of complex envelope aliased version

y(t) is plotted in figure 11. Comparison with the exact results

in figure 4 reveals a very dramatic increase in aliasing, in

fact, by two orders of magnitude. The reason for this

considerable increase can be seen from figure 3 and (75); namely,

the error e(t) is unipolar for + = 0 and it decays very slowly.

Whereas for figure 8, the alternating character of the over-

lapping aliased error lobes led to a cancellation near t = ±40

sec, the opposite situation occurred in figure 11, leading to a
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considerable build-up of the aliasing effect.

The corresponding phase of i(t), P(t), is plotted in figure

12. Its value is zero in the region 0 S t < 10, as expected,

since the desired term, exp(-at), dominates here. Outside this

region, the situation is the same as explained above with respect

to figure 9. We have not plotted the counterpart to figure 10

because no one error lobe dominates anywhere on the time scale;

the result is a phase plot that looks random over the entire

period of (-40,40) sec.

When the complex envelope spectrum is filtered according to

the Hann filter in (83) - (86), the results for the sampled

filtered complex envelope waveform, obtained by means of the

collapsed FFT in (117) and (118) with a = 0, are given in figures

13 and 14. There were 6400 frequency samples taken of G(f) with

increment A = 1/80 Hz and an FFT size of N = 1024 was utilized;

see appendix B. A comparison of the magnitudes in figures 13 and

5 reveals virtually identical results; namely, the error and its

inherent accompanying aliasing, that was present in figure 8, is

absent from figure 13.

The corresponding phase plot of the FFT output is displayed

in figure 14. In the region 0 K t 1 24 sec, where the desired

exp(-at) term dominates, the FFT output phase is equal to the

value of + = -n/2 for this example. When this example was rerun

for * = 0, similar high quality results were obtained, except

that the FFT output phase was zero. The benefits of filtering

the complex envelope spectrum are well illustrated by the results

of figures 13 and 14.
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Figure 8. Magnitude of Complex Envelope via FET, 4ý=-n/2

IT ....

-2 0 (3 k. ) 20 10

Figure 9. Phase of Complex Envelope via FFT, +=-n/2
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Figure 10. Phase of Analytic Waveform via FFT, J=-n/2
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Figure 11. Magnitude of Complex Envelope via FFT, *=O
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Figure 12. Phase of Complex Envelope via FFT, 4=0
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Figure 13. Magni tude of Fi I-1ered Complex Envelope via FTT, ý=J
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ALIASING PROPERTIES OF COSINE AND SINE TRANSFORMS

If a time function is causal, it can be obtained -om its

Fourier transform either by a cosine or a sine transform.

However, when these integral transforms are approximated, by

means of sampling the frequency function and using some

integration rule like trapezoidal, the "alias-free" interval in

the time domain is approximately halved, as shown below. This

does not necessarily mean that these transform alternatives

should be discarded, because a more rapidly decaying integrand

can be useful, but it does point out a cautionary feature in

their u-e and the need to consider the tradeoff between aliasing

and truncation error.

GENERAL TIME FUNCTION

In general, complex time function y(t) is obtained from its

Fourier transform Y(f) according to

y(t) = f df exp(i2nft) Y(f) = (119)

= f df cos(2nft) Y(f) + i { df sin(2nft) Y(f) =(120)

= Ye(t) + YO(t) for all t , (121)

where complex functions ye(t) and yo(t) are the even and odd

parts of function y(t), respectively.
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CAUSAL COMPLEX TIME FUNCTION

Now suppose that y(t) is causal, but possibly complex; then

y(t) = 0 for t < 0 . (122)

Then, letting t = -a, a > 0, we have, from (122) and (121),

0 = y(-a) = ye (-a) + yo(-a) = ye (a) - yo(a) for a > 0 . (123)

That is,

Yo(a) = Ye(a) for a > 0. (124)

Therefore, from (121) and (120), we have two alternatives for a

causal complex time function y(t):

y(t) = 2 J df cos(2nft) Y(f) for t > 0 , (125)

and

y(t) = i2 J df sin(2nft) Y(f) for t > 0 (126)

We need complex function Y(f) for negative as well as positive

frequency arguments f, in order to determine causal complex

function y(t), but we can utilize either a cosine or a sine

transform.
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NONCAUSAL REAL TIME FUNCTION

Now suppose instead that y(t) is real, but noncausal. Then,

since spectrum Y(-f) = Y*(f), we can express (119) as

y(t) = 2 Re I df exp(i2nft) Y(f) (127)

0

= 2{ df cos(2nft) Yr (f) - 2f df sin(2nft) Yi(f) for all t. (128)

0 0

The first term in (128) is even part Ye(t), while the second term

in (128) is odd part y0 (t); see (121). In this case of a real

time function y(t), we need complex function Y(f) only for f > 0.

CAUSAL REAL TIME FUNCTION

Now let y(t) be both causal and real. Then using property

Y(-f) = Y*(f) in (125) and (126), we obtain

y(t) = 4 f df cos(2nft) Yr (f) for t > 0 , (129)

0

and

y(t) = -4 f df sin(2nft) Yi(f) for t > 0 . (130)

0

Here, we need either Y r(f) or Yi(f), and then only for positive

frequency arguments f. Also, a cosine or a sine transform will

suffice for determination of y(t).
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ALIASING PROPERTIES

The above relations have all assumed that spectrum Y(f) is

available for all continuous f. Now we will address the effects

of only having samples of Y(f) available at frequency increment

6. We begin with the trapezoidal approxima-ion to (119):

y1 (t) S a T exp(i2Jnnt) Y(nA) for all t . (131)
n

The approximation y,(t) is periodic in t with period 1/6. It

can be expressed exactly as

yl(t) f' df exp(i2nft) Y(f) A E•(f) = (132)

= y(t) $ 61/•(t) = • y~t - E for all t (133)
n

That is, approximation yl(t) is an aliased version of desired

waveform y(t), with displacements 1/A in time. This result holds

for any complex waveform y(t) and has been used repeatedly in the

analyses above.

The second approximation of interest is obtained from the

cosine transform in (125), which applies for causal complex y(t)

in the form

Y2c(t) = 2A T cos(2nnat) Y(nA) for all t . (134)
n

Y2 c(t) also has period 1/6 in t and can be developed as follows:
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Y2 c(t) = A ( [exp(i2nnAt) + exp(-i2nnbt)J Y(nA)
n

= •df (exp(i2nft) + exp(-i2nft)] Y(f) A 66(f) =

= [y(t) + y(-t)] 6 61/A(t) = 2 Ye(t) 0 61/A(t)

T [ y(t- + y(- t)J for all t. (135)
n

That is, sampling of the cosine transform in (125) results in

aliasing of y(t) plus its mirror image y(-t), even when y(t) is

causal. This will restrict useful results in Y2 c(t) to a region

approximately half as large as that given by (131) and (133),

where the sampled exponential transform was used. Even when we

restrict calculation of approximation Y2c(t) to the region

(0,1/A), we are contaminated by the mirror image lobe y(i/A - t)

and by the usual lobe y(t + 1/A) extending from t = -1/6 into the

desired region.

A similar situation exists for using a sampled version of the

sine transform for causal complex y(t) in (126); namely, consider

the approximation

Y2s(t) N i2a 1 sin(2unAt) Y(nA) for all t . (136)
n

Then
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Y2s(t) = A T (exp(i2nn~t) - exp(-i2nntt)] Y(n&) =
n

= f df [exp(i2nft) - exp(-i2nft)] Y(f) A 6A(f)

- [y(t) - y(-t)] 0 6 1 /A(t) = 2 yo(t) =

- Z[yt a- - y(• - tA ] for all t . (137)
n

Here, for the approximate sine transform, twice the odd part of

causal complex y(t) is aliased with separations 1/A in time,

thereby again leading to a clear region only about half that

attainable from (131) and (133). We will return to these

apparently undesirable transform properties below and find them

useful when we consider a causal real time function.

The next approximation is for the noncausal real waveform

result in (127); namely, letting Co = 0 and En = 1 for n k 1, we

have trapezoidal approximation

Y3 (t) M 2 Re A E n exp(i2nn~t) Y(nA) for all t . (138)
n=O

Then

y3 (t) = 2 Re { df exp(i2aft) Y(f) A &•(f) =

0

f { df exp(i2nft) Y(f) A 6A(f) E y~ t- for all t, (139)n
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just as in (133). Thus, the combination of the cosine and sine

transforms in (128) does not additionally damage the aliasing

behavior associated with sampling. In practice, we would use the

real part of the exponential transform as given by (127). The

same result, (139), follows when the cosine and sine transforms

in (12Pj are individually directly approximated by the

trapezoidal rule and the results added together.

The two final approximations ot interest come from sampling

the results for causal real y(t) in (129) and (130); from (129),

define approximation

SY4c(t) S 46 = En cos(2nnAt) Yr (nr) for all t , (140)
n=0

which has period 1/A in t. Now we develop (140) as

Y4c(t) = 26 1 cos(2nnAt) Yr (nA) =
n

= 2 1 df cos(2nft) Yr (f) A 6A(f) =

= 2 f df exp(i2aft) Yr (f) aS (f =

= df exp(i2nft) [Y(f) + Y*(f) a A(f) =

= y(t) E 6 1/1(t) + y*(-t) S 6 11,(t)

= t - + E y• - t) = 2 Ye(t) * 61,,(t) for all t, (141)
n n
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where we used the real character of y(t).

This end result is identical to (135); however, approximation

Y4 c(t) in (140) uses only the real part Yr (f) of the complex

function Y(f), whereas Y2c(t) in (134) requires the complete

complex function Y(f) for a causal complex y(t). Since it is

possible to have complex functions Y(f) which have rapidly

decaying real parts and slower decaying imaginary parts, (140)

affords the possibility of getting a smaller truncation error

than (134), when y(t) is causal real and when both sums are

carried out to the same frequency limit, because both sums must

be terminated in practice. Whether the reduction in the usable

"alias-free" region, dictated by (141), can be traded off against

a smaller truncation error associated with use of only the real

part Y r(f) in (140), depends on the particular example under

investigation. In any event, (140) affords an alternative to

consider for causal real y(t).

The final approximation comes about by sampling (130):

y4s(t) s -46 = sin(2nnAt) Yi(nA) for all t , (142)
n=l

which has period 1/6 in t. In the usual fashion, we find
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Y4s(t) = -2A T sin(2nnAt) Yi(nA) =
n

= -2 f df sin(2nft) Yi(f) A 6A(f) =

= i2 f df exp(i2nft) Yi(f) 6 &A(f) =

f f df exp(i2nft) (Y(f) - Y*(f)] A 6A(f) -

*

y(t) 6 6 1 1 8(t) - y (-t) D 61/&(t) = 2 yo(t) $ 61/A(t) =

= yt - - y(II - t) for all t .(143)

n n

Here, we used the real character of y(t).

The end result in (143) is identical to (137); however,

Y4s(t) in (142) only requires knowledge of the imaginary part

Yi(f) of complex function Y(f), whereas y2s(t) in (136) requires

the complete complex function Y(f) for a causal complex y(t).

This is due to the fact that (129) and (130) apply only to causal

real y(t), whereas (125) and (126) apply to causal complex y(t).

Since there exist complex functions Y(f) which have more rapidly

decaying imaginary parts than real parts, the opportunity arises

to reduce the truncation error by employing (142) instead of

(136), when y(t) is causal and real. The comments in the sequel

to (141), regarding the trade-off between truncation error and a

reduced alias-free region, are again applicable.
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This procedure, of using only the imaginary part of a Fourier

transform because it decays faster than the real part, was

utilized to advantage in [4; pages 4 - 6] and was based upon an

earlier result in [5; (15)]. The very rapid decay of the

imaginary part far outweighed the aliasing; see [4; page 6].

EVALUATION BY MEANS OF FFTs

If periodic function y1 (t) in (131) is evaluated at the

equally spaced time points k/(NA) for k-0 to N-I, which suffice

to cover one period, we obtain

NA= Z exp(i2nnk/N) Y(na) = (144)
n

N-i
-A = exp(i2nnk/N) z , (145)

n=O

where 1z n, 0 & n • N-I, is the collapsed version of sequence

{Y(nL)J, -- < n < w. No approximations are involved in this

collapsing procedure from (144) to (145). Relation (145) can be

accomplished by means of an N-point FFT if N is highly composite.

In a similar fashion, (140) yields samples of the cosine

transform as
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Y4c NA 4 = E n cos(2nnk/N) Y r (n*A)
n-O

= 4A Re = exp(i2nnk/N) En Y r(nA) = (146)
n=0

N-i
= 4A Re = exp(i2nnk/N) z , (147)

n=O

where (zn 1, 0 S n : N-I, is the collapsed version of sequence
JEn Y r(nA), 0 S n < -.

Since (147) will likely be realized as the real part of an

FFT output, the question arises as to the interpretation and

utility of the total complex FFT output in (147). To this aim,

we rewrite Y4c(t) in (146) (in its continuous time version) as

Y4c(t) = Re 4 f df exp(i2nft) Yr (f) a SA(f) =

0

= Refz 1 (t) 0 6 1/4(t)l , (148)

where we define, for all t, Fourier transform

z1 (t) = 4 { df exp(i2nft) Yr(f) =

0

= f df exp(i2nft) [2Y(f) + 2Y*(f)] =

0

* *

y+(t) + y+(-t) = Ex(t) + y (-t)] exp(i2nf t) =

= y(t) + y(-t) + i[yH(t) - YH(-t)] • (149)
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That is, y4c(t) is the real part of the aliased version of z 1 (t),

which itself is composed of the analytic waveform y+(t) and its

mirror image. Thus, not only is zl(t) aliased according to

(148), but in addition, zl(t) contains terms which will further

overlap and thereby confuse the values of Y4c(t) in the

fundamental range (0,i/A). (Of course, the real part of zl(t) in

(149) for t > 0 is, as expected, just y(t) for this causal real

case.)

Finally, sampling the sine transform of Yi(f) in (142) yields

111

4s 4c =~ sin(2rnk/N) Yi(n&) =n=l

- - 4A Im =_• exp(i2nnk/N) Yi(nA) = (150)
n=l

N-I
= - 4A Im = exp(i2nnk/N) zn (151)

n=0

where izn 1, 0 S n S N-1, is the collapsed version of sequence

{Yi(nAI, 1 5 n < •. Relation (151) can be realized as an N-point

FFT of which only the imaginary part is kept for 0 S k S N-i.

As above, the interpretation of the complete complex output

of the FFT in (151) is furnished by returning to the continuous

version of the sampled Y4s(t) in (150). We express it as

Y4s(t) = - Im 4 { df exp(i2nft) Yi(f) 6 66(f) =

0

= Imiz 2 (t) D 61/6(t)j , (152)
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where we define, for all t, Fourier transform

z2 (t) = - 4 f df exp(i2nft) Yi(f)

0

= i f df exp(i2nft) [2Y(f) - 2Y *(f)] =

0

= i[y+(t) - y+(-t)] = i[y(t) - y (-t)] exp(i2nfct) - (153)

= ily(t) - y(-t)] - YH(t) - yH(-t) • (154)

Again, the aliasing of z 2 (t) in (152) and the mirror image of the

analytic waveform and complex envelope in (153) will serve to

confuse the usefulness of z2 (t). The imaginary part of z 2 (t) in

(154) for t > 0 is just y(t), as expected, for this causal real

waveform.
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DISPLACED SAMPLING

If displaced samples of a waveform are desired, such as at

time locations (k+p)/(NA) in (145), where 0 < p < 1, we can

obtain them via an N-point FFT as follows: from (131),

Y(kfNA E = exp(i2nnk/N) exp(i2nng/N) Y(nA) = (155)
n

N-I
- 7 Z exp(i2nnk/N) zn for 0 - k S N-I , (156)

n=O

where 1zn 1, 0 • n • N-I, is the collapsed version of sequence

lexp(i2nnp/N) Y(nA)J, -- < n < -. That is, we have to load up

the arrays containing 1Zn I with phase-shifted versions of the

original sequence [Y(n6)1 and then perform the N-point FFT.

Calculation of phasor pn = exp(i2nno/N) in (155) can take

advantage of recursion pn Pn-1 exp(i2ng/N).
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SUMMARY

The advantages of filtering the complex envelope spectrum by

means of a suitable lowpass filter are significant in some

instances. The singular behavior of the complex envelope

waveform is eliminated by utilizing a filter which cuts off at

finite frequencies, while the slow decay in the time domain of

the complex envelope is circumvented by using a filter with a

smoothly tapered cutoff that prevents any discontinuities in the

complex envelope spectrum from contributing.

The use of an FFT to evaluate the filtered complex envelope

is then an attractive efficient approach because the inherent

time aliasing associated with frequency sampling has been greatly

suppressed. Also, the very rapidly varying singular components

of the complex envelope have been eliminated, allowing for a

lower time-sampling rate, that is, smaller FFT sizes.

When two waveforms, each with its own imposed amplitude- and

phase-modulations, are convolved, such as encountered in the

narrowband excitation of a passband filter, the output complex

envelope is given exactly by the convolution of the individual

complex envelopes. Although the convolution of the two (complex)

imposed modulations is often a good approximation to the output

complex envelope, it has an error term. This analysis is

presented in appendix C.
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APPENDIX A. DETERMINATION OF CENTER FREQUENCY

Suppose we are given spectrum Y(f) of (narrowband) real

waveform y(t), but the center frequency of Y(f) is not obvious or

is unknown. The analytic waveform is still uniquely given by

y+(t) = f df exp(i2nft) Y+(f) = 2 f df exp(i2nft) Y(f) . (A-1)

0

Make a guess at initial frequency f near the center of Y+(fl.

Then compute the initial down-shifted waveform

yi(t) = exp(-i2nfit) y+(t) = 2 f df exp(i2nft) Y(f+fi) . (A-2)

--f.1

Compute initial phase Pi(t) = arglyi(t)} and then unwrap Pi(t).

Select time t in the interval T of interest and fit a straight

line a + pt to the unwrapped phase Pi(t) over T. Compute

frequency

fc = fi + 2 ; (A-3)

this is the center frequency of y+(t) for t E T. Another

selection of a different time interval could lead to a somewhat

different center frequency; there is no unique center frequency

of an arbitrarily given spec: um Y(f).

The complex envelope is then

y(t) = exp(-i2nf ct) y+(t) . (A-4)

The "physical" envelope or extracted amplitude modulation is
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A(t) = jy(t)l = ly+(t)l = Iyi(t)I , (A-5)

which is independent of the choice of fi or fc" The extracted

phase of complex envelope y(t) is

P(t) = argIy(t)] = argfy+(t) exp(-i2nf ct)j = Pi(t) - At , (A-6)

where we used (A-4) and (A-2). Functions yi(t) and Pi(t) have

already been computed and can be used to evaluate the envelope

A(t) and phase P(t). The real waveform is

y(t) = Refy+(t)I = Rely(t) exp(i2nf ct)J = A(t) cos[2nf ct + P(t)],

(A-7)
in terms of chosen center frequency fc and amplitude and phase

modulations A(t) and P(t), respectively. Although fc and P(t)

are not unique, the argument of the cosine and the waveform y(t)

in (A-7) are unique, as may be seen by the first equality in

(A-7). All of these relations hold for time t £ T.

If the fit of the straight line a + at to initial unwrapped

phase Pi(t) over interval T is via minimum error energy, then we

find

S01 - 1 ' Pn dt tn v f dt tn Pi(t) . (A-8)

PoP2 - PI T T

There is no need to explicitly compute a, although it should be

included in the error energy minimization in order to afford a

better fit.
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APPENDIX B. PROGRAM FOR FILTERED COMPLEX ENVELOPE VIA FFT

The program listed below actually computes the unfiltered

complex envelope by means of an FFT. In order to convert it to

one which will compute the filtered complex envelope, remove

lines 220 - 320 and replace them by the following lines:

220 Fl=40. ! CUTOFF FREQUENCY < Fo
230 HIl=.5*PI/Fl
240 MI=M*Fl/Fo
250 FOR Ms=-Ml TO Ml ! -Fl < F < F1
260 J=Ms MODULO N ! COLLAPSING
270 F=Df*Ms ! FREQUENCY f
280 CALL Y(F+Fo,Al,Wo,Cp,Sp,Yr,Yi) !SHIFTED FREQUENCY FUNCTION
290 Cos=COS(HIl*F)
300 H=Cos*Cos ! REAL LOWPASS HANN FILTER
310 X(J)=X(J)+Yr*H
320 Y(J)=Y(J)-Yi*H ! CONJUGATE INPUT INTO FFT

10 I COriPLE:: E ,,'ELfDPE VIR SHIFTED FRE-UEICY FUNiCTI'-|ii
20 HI=1 DAMPItIG RLPHR
30 Fo=100 C cARR I ER FREQUEtIC:Y
40 Phi -PI "27' PHASE
50 t-=: -C,0 1 tIULIBER OF $SAMPLES FOR F 0 O; LItiE 270
E.l0 tJ=1024 4 SIZE OF FFT; ZERO SUBSCRIPT
70 RED IM Co.= (0: 41:,, ,:N-1),"0:N-1)
5:0 E' I 'Ii C: c'- (1I024 ), .::: 4096 ) j , ( 4096 1)

90 11OIEMLE PI NTEGERS, HOT )UtLE FRECAI'SI C
100 3 2=H 2
110 r12.*PI.'
120 FOR J=0 TO tl/4
130 C rjs=. 3 )=COSC0 I' 1 CILIARTER-COSINE TABLE IN C: oz'*.),
140 HE'2:;T J
150 Cp=C0S(Phi :
160 Sp=SI,4Phi
170 IJo=2*PI*F,:,
1 ;30 if =Fo.'M'1 FREOUEIIC:Y I lJCREM'EHIT
I 1 t. = ... *(t*Ef.) TIME ItI4CREMENIT :ti C.OCIPLE::. EW.,ELOFE
200 NAT X=(•0. )
'10 HAT 0=,:1 . .

U0 J='1. MIODULO 14
Cr ','i ) I Y(O'

"250 J , 5-*"r
,50 J'-. 5*: I CONJUGATE INPUT TO FFT
0 FOR rI.=-M-i+l TO C HI*10 H NOTIC.E I.IPPER LIOIT Oil FRE LIE NC ,

J = 1-1 S Mi0itBUILO II I C.OLLAIP.S I tI G
2-90 F=DfIt *1 ' FP-EQUEIICY f

- iLL Y F+F., Al 1 o, C p , Y , I SHIFTED FREOLIEIICY FI.ItICTI T I
31 C) J J + 'r

Y '. ,(.-'Y i CONIJU|]ATE IUPLIT TO FFT
NEJ T 'I-
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340 M AFT -,=*2. *Df)
350 H1AT Y='*(2. *D) D* CONJUGHiTE

36 0 C A L L F ft 14 ( rI , C : ..'* ', : ),y,, ) I ,u ,t OF - kI* )PLE:..:
370 GINIT - ENVELOPE
380 PLOTTER IS "GRAPHICS"
390 GRAPHICS Oil
400 WINDO'W -N2,N2,-O 0 CENTER PLOT AT TIME t
4103 LINE TYPE 3
420 GRID N."8, 1
430 LINE TYPE 4
440 MOVE 0,0
450 T-=Dt +tN'4
460 DRAW tlH1"4, LGT<E>.' -A 1 *" )IT_=.)

470 PENUP
480 LINE TYPE 1
490 FOR Mz=-H2 TO H2
500 J=M_1 MODULO NI
510 .
520 ''Y

5.-2:0 TM*AG+Y,' MNIGMITUDE S.UOIARED i1OMPPLE:: ENtELOPE
540 IF T>0. THEN 570
550 PEHUP
560 GOTO 580
570 FLOCT M_ ,LGT, T) *5 FMAGNITUDE OF COrIPLEX:. ENVELOPE
580 NE>:T M•
590 PENUP
600 PAUSE
610 GCLEAR
620 GRAPHICS ON
6.30 W I NDOW -112,ll22,-PI,PI
640 LINE TYPE 3
650 GRID N 6,PI 2
660 LINE TYPE I
670 FOR ris=-N2 TO N2 ' PLOT COMPLE: ENVELOPE PHi':..E
660 .fJ=Ms MODULO N
690 PLOT Ms,FNArg,.-•->,3 %J, 1 CONJUGATE THE FFT OUTPUT
"700 NEST M-.
710 PENUP
720 PAUSE
730 GC.LE A R
740 GRAPHICS ON
750 LINE TYPE :3
760 GRID .8,PI.2
770 LINE TYPE 1
180 FOR 1'-=-12 TO N2
730 J=1'l= MODULCI N
800 T =-'1z*Dt I T IE t
8,10 C. o :.C OS * T1 .' o I SHIFT PHASE THE

0 Si nr='3 IN Il*T- .' Co0MPLE.:: ENIELOPE BY 1- T_

640 y=-4, j CONJUGATE THE FFT OUTPUT
5 0 PLOT M.1 , F Ar I I A :,:. -Y* S i r, ::3'S 1 n +Y C:c..

aE 0 H E',! T Ms
8,-0 PENUP
8 0 PA IJUS E

90 END
900
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910 LEF FNAr-:,Y) ! PRINCIPAL ARG(Z)
920 IF X=0. THEN RETURN .5*PI*SGt(Y)
930 A=ATN(Y/X)
940 IF X>0. THEN RETURN A
950 IF Y<0. THEN RETURN A-PI
960 RETURN R+PI
970 FNEND
980
990 SUE: Y(F,Al,Wo,Cp,,Sp.,,Yr,,Y0i) ! SPECTRAL FUNCTION
1000 W=2.*PI*F
1010 T=H-Ho
1020 D=RI*RI+T*T
10:30 R I ( C:p*A 1 + -;p*T ", -"

1040 I=:Sp*Al-C:p*TYD
1050 T=W+Wo
1060 D=AI*RI +T*T
1070 .2=Cp*A1-Sp*T).D
1080 I2=(-Sp*I-C:p*T .- 'D
1090 "'r.=. 5 (RI+R2)
1100 f-i=.5*(II+12)
1110 SUBEND
1120
11:_:30 .:t: F ftl4(DOUBLE N, REAL Co..('*),X(*)") ! N = .-14 16:3:4; 8 .0 Sl F:S
1140 DOUBLE LIg2rtNI, N2,HBN4,.,K ! I TEGERS < 2"3 1 2, 147, 4 0, 64-
1150 DOUPLE 11,12, 13,14,15,16,17, 18, 19,110,111,112,113, 14,LK8: 13)
1160 IF H=1 THEN SUBEXIT
1170 IF 1>2 THEN 1250
1180 A=X'3)+X<I)

1200 >< ;=
1 2.1 A="/ 0 +Y (1 )1210 A' 0.-+Y I.)
1 Z .1.) (0) -Y( 1
1230 '," 1) =A
1-240 .IJBEX I T
1250 A=LOG(,H)/LOG(2. )
12 60 Log2n=RA
12,7 IF ABS(A-Log2n)<I.E-8 THEN 1300
1280 PRINT "N N; = "IS NOT A POWER OF 2; DISALLOWED.
12198 PAUSE
1300 NI =1-'4
1310 N2=NI+I
1 :320 t43=12+ I
1 3:30 N4 =11:3+t.41
1:340 FOR 11=1 TO Log2n
1350 12=2"(Log2n- I I
1360 I3=2*12
1 T'0 1 4=N -13
130',0 FOR 15=1 TO 12
1.390 16=( 15- )*I14+ I

1400 IF 16(=1N42 THEN 1440
1410 R1 =-Ccoz (ý.N4- 16- 1 )
1420 A2=-,--:os 16-H41- I)

1430 GOTO 14i0
1440 I =co.i c 6-I )
145u 2 - o-0'1 - 6 I

1460 FOP 17=0 TO t-I- -STEP 1:3
1470 18=17+15-I
148u 19=18+12
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1490 TI=X(IS)
1500 T2=X- 19:
1510 T3=V 18)
1520 T4=(Ig19)
1530 R3=TI-T2
1540 84=T3-T4
1550 , I$')=TI+T2
1560 "k 18ý)=T3+T4
1570 ,'.%19' =i 1*R3-A2*A4
1580 Y(19) = 1A IR 4 +2*F3
1590 NEXT 17
1600 NEXT 15
1610 HEXT 11
1620 11=Log2ni+1
1630 FOR 12=1 TO 14
1640 L(12-1)=I
1650 IF 12>Log r, THEN 1670
16,60 v12-I,=- , I1-12)
1670 tE, XT I2
1680 f=O
1690 FOR II1=I TO Lk13•
1700 FOR 12=11 TO L(12) STEP L(13)
1710 FOR I3=I2 TO L(II) STEP L(12)
1720 FOR 14=1:3 TO L(10) STEP L(II)
1730 FOR 15=14 TO L.9) STEP L(10)
1740 FOR 16=15 TO L(8) STEP L(9)
1750 FOR 17=16 TO Lk?) STEP L(8)
1760 FOR 18=17 TO L(6) STEP L(7)
1770 FOR 19=18 TO LV5) STEP L(6)
1780 FOR 110=19 TO L(4) STEP L(5)
1790 FOR 111=110 TO L(3) STEP L(4>
1800 FOR 112=111 TO L(2) STEP L(3)
1810 FOR 113=112 TO L(1) STEP L(2)
1820 FOR 114=113 TO L(O) STEP L(I)
18:30 J=114-I
1840 IF 1:..>J THEN 1910
1850 H=X(K)
1860 X( KI") =X( J)
1870 ';J)=A
1880 A=Y" K)
1890 ,( ( = =,'J)
1900 Y(J)=A
1910 K=i+I
1920 NEXT 114
1930 NEXT 1 13
1940 N4EX-T 112
1950 HlEXT III
1960 N1EX'T 110
1970 NIEX'T 19
1980 INEX T 18
1990 NEXT 17
2000 NEX, T 16
2010 fIE>.T 15
2020 NEJT 14
20:30 tiE I 13
2040 NEXT 1 2
2050 NIE,:T II
:060 SUBEND
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APPENDIX C. CONVOLUTION OF TWO WAVEFORMS

Suppose real waveform x(t) excites passband filter H(f) with

real impulse response h(t). Then, the output is

Y(f) = H(f) X(f) , y(t) = h(t) 0 x(t) (C-i)

The single-sided output spectrum is

1Y(f) = 2 U(f) Y(f) =2 U(f) H(f) X(f) = + H+f) X+(f) (C-2)

The corresponding output analytic waveform is exactly

1
y(t) = 2 h+(t) S x+(t) , (C-3)

which is just (one-half of) the convolution of the individual

analytic waveforms.

If the center frequency of Y+(f) is fc (see appendix A), then

the spectrum of the output complex envelope is, using (C-2),

1 1 H(f) X(f) (C-4)= Y+(f+fc) = 2 H+(f+fc) X+(f+fc) = X ,

where we have taken the same center frequency, fc' for H+(f) as

well as X+(f). This relation in (C-4) is exact; it involves no

narrowband approximations. The output complex envelope

corresponding to (C-4) is then exactly

1_t = . h(t) S x(t) (C-5)

That is, the complex envelope of the convolution of any two

weveforms is equal to (one-half of) the convolution of the two

individual complex envelopes, irrespective of their frequency
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contents.

Now suppose that x(t) is given in terms of some complex

imposed modulation xi(t) according to

x(t) = Refxi(t) exp(i2nfct)) , (C-6)

which allows for amplitude-modulation as well as phase-

modulation. The spectrum of x(t) can then be expressed as

1 *
X(f) = I [Xi(f-fc) + Xi(-f-fc)] . (C-7)

Also, suppose that filter impulse response h(t) is expressible in

a similar form according to

h(t) = Relhi(t) exp(i2nfct)j , (C-8)

with corresponding transfer function

H(f) - Hi(f-fc) + Hi(-f-f) (C-9)

The filter output spectrum then follows from (C-i), (C-7),

and (C-9) as

Y(f) = [Hi(f-fc) Xi(f-fc) + Hi(-f-fc) Xi(-f-f ) +
4 i. c i C 1 c i c

+ Hi(-f-fc) Xi(f-fc) + Hi(f-fc) Xi(-f-fc) ] (C-10)

By inverse Fourier transforming the individual terms, the

corresponding waveform to (C-10) is found to be exactly

y(t) = Relexp(i2nfct) [ya(t) + Yb(t)]i , (C-Il)

where
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Ya(t) = • hi(t) ( xi(t) , (C-12)

and

1 *

Yb(t) = 2 [hi(t) exp(-i4nf ct)] 9 xi(t) . (C-13)

Relation (C-12) states that component ya (L) of output y(t)

in (C-11) is just the convolution of the two complex imposed

modulations hi(t) and xi(t). However, (C-li) and (C-13) reveal

that there is an additional term in y(t), which requires the

convolution of a relatively high-frequency component, namely

exp(-i4f ct). Since this latter term, Yb(t)I will often be

small due to this oscillatory integrand, we may neglect it in

many circumstances.

A good way of assessing the importance of the Yb(t) term in

(C-I) is to observe that it is due to the second line of the

spectrum in (C-10); the first line in (C-10) corresponds to

Ya (t). Since Hi(f) and Xi(f) are generally lowpass functions of

frequency, the function Hi(-f-fc) in (C-10) is centered around

f = -fc' while the Xi(f-fc) term peaks near f = fc" The

separation of these two functions is approximately 2fc on the f

axis; if this separation is somewhat greater than the bandwidths

of Hi and Xi, then there is inconsequential overlap of any of the

frequency components in the second line of (C-10). This leads to

a small value for Yb(t) for all t and we can neglect its effect

relative to ya(t) in (C-lI).
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